File: zgegv.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (171 lines) | stat: -rw-r--r-- 13,606 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#include "rb_lapack.h"

extern VOID zgegv_(char* jobvl, char* jobvr, integer* n, doublecomplex* a, integer* lda, doublecomplex* b, integer* ldb, doublecomplex* alpha, doublecomplex* beta, doublecomplex* vl, integer* ldvl, doublecomplex* vr, integer* ldvr, doublecomplex* work, integer* lwork, doublereal* rwork, integer* info);


static VALUE
rblapack_zgegv(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobvl;
  char jobvl; 
  VALUE rblapack_jobvr;
  char jobvr; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_alpha;
  doublecomplex *alpha; 
  VALUE rblapack_beta;
  doublecomplex *beta; 
  VALUE rblapack_vl;
  doublecomplex *vl; 
  VALUE rblapack_vr;
  doublecomplex *vr; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_rwork;
  doublereal *rwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;

  integer lda;
  integer n;
  integer ldb;
  integer ldvl;
  integer ldvr;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  alpha, beta, vl, vr, work, rwork, info, a, b = NumRu::Lapack.zgegv( jobvl, jobvr, a, b, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  This routine is deprecated and has been replaced by routine ZGGEV.\n*\n*  ZGEGV computes the eigenvalues and, optionally, the left and/or right\n*  eigenvectors of a complex matrix pair (A,B).\n*  Given two square matrices A and B,\n*  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the\n*  eigenvalues lambda and corresponding (non-zero) eigenvectors x such\n*  that\n*     A*x = lambda*B*x.\n*\n*  An alternate form is to find the eigenvalues mu and corresponding\n*  eigenvectors y such that\n*     mu*A*y = B*y.\n*\n*  These two forms are equivalent with mu = 1/lambda and x = y if\n*  neither lambda nor mu is zero.  In order to deal with the case that\n*  lambda or mu is zero or small, two values alpha and beta are returned\n*  for each eigenvalue, such that lambda = alpha/beta and\n*  mu = beta/alpha.\n*\n*  The vectors x and y in the above equations are right eigenvectors of\n*  the matrix pair (A,B).  Vectors u and v satisfying\n*     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B\n*  are left eigenvectors of (A,B).\n*\n*  Note: this routine performs \"full balancing\" on A and B -- see\n*  \"Further Details\", below.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBVL   (input) CHARACTER*1\n*          = 'N':  do not compute the left generalized eigenvectors;\n*          = 'V':  compute the left generalized eigenvectors (returned\n*                  in VL).\n*\n*  JOBVR   (input) CHARACTER*1\n*          = 'N':  do not compute the right generalized eigenvectors;\n*          = 'V':  compute the right generalized eigenvectors (returned\n*                  in VR).\n*\n*  N       (input) INTEGER\n*          The order of the matrices A, B, VL, and VR.  N >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA, N)\n*          On entry, the matrix A.\n*          If JOBVL = 'V' or JOBVR = 'V', then on exit A\n*          contains the Schur form of A from the generalized Schur\n*          factorization of the pair (A,B) after balancing.  If no\n*          eigenvectors were computed, then only the diagonal elements\n*          of the Schur form will be correct.  See ZGGHRD and ZHGEQZ\n*          for details.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of A.  LDA >= max(1,N).\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB, N)\n*          On entry, the matrix B.\n*          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the\n*          upper triangular matrix obtained from B in the generalized\n*          Schur factorization of the pair (A,B) after balancing.\n*          If no eigenvectors were computed, then only the diagonal\n*          elements of B will be correct.  See ZGGHRD and ZHGEQZ for\n*          details.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of B.  LDB >= max(1,N).\n*\n*  ALPHA   (output) COMPLEX*16 array, dimension (N)\n*          The complex scalars alpha that define the eigenvalues of\n*          GNEP.\n*\n*  BETA    (output) COMPLEX*16 array, dimension (N)\n*          The complex scalars beta that define the eigenvalues of GNEP.\n*          \n*          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)\n*          represent the j-th eigenvalue of the matrix pair (A,B), in\n*          one of the forms lambda = alpha/beta or mu = beta/alpha.\n*          Since either lambda or mu may overflow, they should not,\n*          in general, be computed.\n*\n*  VL      (output) COMPLEX*16 array, dimension (LDVL,N)\n*          If JOBVL = 'V', the left eigenvectors u(j) are stored\n*          in the columns of VL, in the same order as their eigenvalues.\n*          Each eigenvector is scaled so that its largest component has\n*          abs(real part) + abs(imag. part) = 1, except for eigenvectors\n*          corresponding to an eigenvalue with alpha = beta = 0, which\n*          are set to zero.\n*          Not referenced if JOBVL = 'N'.\n*\n*  LDVL    (input) INTEGER\n*          The leading dimension of the matrix VL. LDVL >= 1, and\n*          if JOBVL = 'V', LDVL >= N.\n*\n*  VR      (output) COMPLEX*16 array, dimension (LDVR,N)\n*          If JOBVR = 'V', the right eigenvectors x(j) are stored\n*          in the columns of VR, in the same order as their eigenvalues.\n*          Each eigenvector is scaled so that its largest component has\n*          abs(real part) + abs(imag. part) = 1, except for eigenvectors\n*          corresponding to an eigenvalue with alpha = beta = 0, which\n*          are set to zero.\n*          Not referenced if JOBVR = 'N'.\n*\n*  LDVR    (input) INTEGER\n*          The leading dimension of the matrix VR. LDVR >= 1, and\n*          if JOBVR = 'V', LDVR >= N.\n*\n*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.  LWORK >= max(1,2*N).\n*          For good performance, LWORK must generally be larger.\n*          To compute the optimal value of LWORK, call ILAENV to get\n*          blocksizes (for ZGEQRF, ZUNMQR, and ZUNGQR.)  Then compute:\n*          NB  -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and ZUNGQR;\n*          The optimal LWORK is  MAX( 2*N, N*(NB+1) ).\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (8*N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          =1,...,N:\n*                The QZ iteration failed.  No eigenvectors have been\n*                calculated, but ALPHA(j) and BETA(j) should be\n*                correct for j=INFO+1,...,N.\n*          > N:  errors that usually indicate LAPACK problems:\n*                =N+1: error return from ZGGBAL\n*                =N+2: error return from ZGEQRF\n*                =N+3: error return from ZUNMQR\n*                =N+4: error return from ZUNGQR\n*                =N+5: error return from ZGGHRD\n*                =N+6: error return from ZHGEQZ (other than failed\n*                                               iteration)\n*                =N+7: error return from ZTGEVC\n*                =N+8: error return from ZGGBAK (computing VL)\n*                =N+9: error return from ZGGBAK (computing VR)\n*                =N+10: error return from ZLASCL (various calls)\n*\n\n*  Further Details\n*  ===============\n*\n*  Balancing\n*  ---------\n*\n*  This driver calls ZGGBAL to both permute and scale rows and columns\n*  of A and B.  The permutations PL and PR are chosen so that PL*A*PR\n*  and PL*B*R will be upper triangular except for the diagonal blocks\n*  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as\n*  possible.  The diagonal scaling matrices DL and DR are chosen so\n*  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to\n*  one (except for the elements that start out zero.)\n*\n*  After the eigenvalues and eigenvectors of the balanced matrices\n*  have been computed, ZGGBAK transforms the eigenvectors back to what\n*  they would have been (in perfect arithmetic) if they had not been\n*  balanced.\n*\n*  Contents of A and B on Exit\n*  -------- -- - --- - -- ----\n*\n*  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or\n*  both), then on exit the arrays A and B will contain the complex Schur\n*  form[*] of the \"balanced\" versions of A and B.  If no eigenvectors\n*  are computed, then only the diagonal blocks will be correct.\n*\n*  [*] In other words, upper triangular form.\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  alpha, beta, vl, vr, work, rwork, info, a, b = NumRu::Lapack.zgegv( jobvl, jobvr, a, b, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_jobvl = argv[0];
  rblapack_jobvr = argv[1];
  rblapack_a = argv[2];
  rblapack_b = argv[3];
  if (argc == 5) {
    rblapack_lwork = argv[4];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  jobvl = StringValueCStr(rblapack_jobvl)[0];
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  jobvr = StringValueCStr(rblapack_jobvr)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  ldvr = lsame_(&jobvr,"V") ? n : 1;
  if (rblapack_lwork == Qnil)
    lwork = 2*n;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  ldvl = lsame_(&jobvl,"V") ? n : 1;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_alpha = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  alpha = NA_PTR_TYPE(rblapack_alpha, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_beta = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  beta = NA_PTR_TYPE(rblapack_beta, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldvl;
    shape[1] = n;
    rblapack_vl = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  vl = NA_PTR_TYPE(rblapack_vl, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldvr;
    shape[1] = n;
    rblapack_vr = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  vr = NA_PTR_TYPE(rblapack_vr, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = 8*n;
    rblapack_rwork = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  rwork = NA_PTR_TYPE(rblapack_rwork, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  zgegv_(&jobvl, &jobvr, &n, a, &lda, b, &ldb, alpha, beta, vl, &ldvl, vr, &ldvr, work, &lwork, rwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(9, rblapack_alpha, rblapack_beta, rblapack_vl, rblapack_vr, rblapack_work, rblapack_rwork, rblapack_info, rblapack_a, rblapack_b);
}

void
init_lapack_zgegv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zgegv", rblapack_zgegv, -1);
}