File: zggev.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (171 lines) | stat: -rw-r--r-- 10,471 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#include "rb_lapack.h"

extern VOID zggev_(char* jobvl, char* jobvr, integer* n, doublecomplex* a, integer* lda, doublecomplex* b, integer* ldb, doublecomplex* alpha, doublecomplex* beta, doublecomplex* vl, integer* ldvl, doublecomplex* vr, integer* ldvr, doublecomplex* work, integer* lwork, doublereal* rwork, integer* info);


static VALUE
rblapack_zggev(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobvl;
  char jobvl; 
  VALUE rblapack_jobvr;
  char jobvr; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_alpha;
  doublecomplex *alpha; 
  VALUE rblapack_beta;
  doublecomplex *beta; 
  VALUE rblapack_vl;
  doublecomplex *vl; 
  VALUE rblapack_vr;
  doublecomplex *vr; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_rwork;
  doublereal *rwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;

  integer lda;
  integer n;
  integer ldb;
  integer ldvl;
  integer ldvr;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  alpha, beta, vl, vr, work, rwork, info, a, b = NumRu::Lapack.zggev( jobvl, jobvr, a, b, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices\n*  (A,B), the generalized eigenvalues, and optionally, the left and/or\n*  right generalized eigenvectors.\n*\n*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar\n*  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is\n*  singular. It is usually represented as the pair (alpha,beta), as\n*  there is a reasonable interpretation for beta=0, and even for both\n*  being zero.\n*\n*  The right generalized eigenvector v(j) corresponding to the\n*  generalized eigenvalue lambda(j) of (A,B) satisfies\n*\n*               A * v(j) = lambda(j) * B * v(j).\n*\n*  The left generalized eigenvector u(j) corresponding to the\n*  generalized eigenvalues lambda(j) of (A,B) satisfies\n*\n*               u(j)**H * A = lambda(j) * u(j)**H * B\n*\n*  where u(j)**H is the conjugate-transpose of u(j).\n*\n\n*  Arguments\n*  =========\n*\n*  JOBVL   (input) CHARACTER*1\n*          = 'N':  do not compute the left generalized eigenvectors;\n*          = 'V':  compute the left generalized eigenvectors.\n*\n*  JOBVR   (input) CHARACTER*1\n*          = 'N':  do not compute the right generalized eigenvectors;\n*          = 'V':  compute the right generalized eigenvectors.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A, B, VL, and VR.  N >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA, N)\n*          On entry, the matrix A in the pair (A,B).\n*          On exit, A has been overwritten.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of A.  LDA >= max(1,N).\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB, N)\n*          On entry, the matrix B in the pair (A,B).\n*          On exit, B has been overwritten.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of B.  LDB >= max(1,N).\n*\n*  ALPHA   (output) COMPLEX*16 array, dimension (N)\n*  BETA    (output) COMPLEX*16 array, dimension (N)\n*          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the\n*          generalized eigenvalues.\n*\n*          Note: the quotients ALPHA(j)/BETA(j) may easily over- or\n*          underflow, and BETA(j) may even be zero.  Thus, the user\n*          should avoid naively computing the ratio alpha/beta.\n*          However, ALPHA will be always less than and usually\n*          comparable with norm(A) in magnitude, and BETA always less\n*          than and usually comparable with norm(B).\n*\n*  VL      (output) COMPLEX*16 array, dimension (LDVL,N)\n*          If JOBVL = 'V', the left generalized eigenvectors u(j) are\n*          stored one after another in the columns of VL, in the same\n*          order as their eigenvalues.\n*          Each eigenvector is scaled so the largest component has\n*          abs(real part) + abs(imag. part) = 1.\n*          Not referenced if JOBVL = 'N'.\n*\n*  LDVL    (input) INTEGER\n*          The leading dimension of the matrix VL. LDVL >= 1, and\n*          if JOBVL = 'V', LDVL >= N.\n*\n*  VR      (output) COMPLEX*16 array, dimension (LDVR,N)\n*          If JOBVR = 'V', the right generalized eigenvectors v(j) are\n*          stored one after another in the columns of VR, in the same\n*          order as their eigenvalues.\n*          Each eigenvector is scaled so the largest component has\n*          abs(real part) + abs(imag. part) = 1.\n*          Not referenced if JOBVR = 'N'.\n*\n*  LDVR    (input) INTEGER\n*          The leading dimension of the matrix VR. LDVR >= 1, and\n*          if JOBVR = 'V', LDVR >= N.\n*\n*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.  LWORK >= max(1,2*N).\n*          For good performance, LWORK must generally be larger.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (8*N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          =1,...,N:\n*                The QZ iteration failed.  No eigenvectors have been\n*                calculated, but ALPHA(j) and BETA(j) should be\n*                correct for j=INFO+1,...,N.\n*          > N:  =N+1: other then QZ iteration failed in DHGEQZ,\n*                =N+2: error return from DTGEVC.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  alpha, beta, vl, vr, work, rwork, info, a, b = NumRu::Lapack.zggev( jobvl, jobvr, a, b, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_jobvl = argv[0];
  rblapack_jobvr = argv[1];
  rblapack_a = argv[2];
  rblapack_b = argv[3];
  if (argc == 5) {
    rblapack_lwork = argv[4];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  jobvl = StringValueCStr(rblapack_jobvl)[0];
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  jobvr = StringValueCStr(rblapack_jobvr)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  ldvr = lsame_(&jobvr,"V") ? n : 1;
  if (rblapack_lwork == Qnil)
    lwork = MAX(1,2*n);
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  ldvl = lsame_(&jobvl,"V") ? n : 1;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_alpha = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  alpha = NA_PTR_TYPE(rblapack_alpha, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_beta = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  beta = NA_PTR_TYPE(rblapack_beta, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldvl;
    shape[1] = n;
    rblapack_vl = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  vl = NA_PTR_TYPE(rblapack_vl, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldvr;
    shape[1] = n;
    rblapack_vr = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  vr = NA_PTR_TYPE(rblapack_vr, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = 8*n;
    rblapack_rwork = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  rwork = NA_PTR_TYPE(rblapack_rwork, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  zggev_(&jobvl, &jobvr, &n, a, &lda, b, &ldb, alpha, beta, vl, &ldvl, vr, &ldvr, work, &lwork, rwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(9, rblapack_alpha, rblapack_beta, rblapack_vl, rblapack_vr, rblapack_work, rblapack_rwork, rblapack_info, rblapack_a, rblapack_b);
}

void
init_lapack_zggev(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zggev", rblapack_zggev, -1);
}