File: zggrqf.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (141 lines) | stat: -rw-r--r-- 10,093 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#include "rb_lapack.h"

extern VOID zggrqf_(integer* m, integer* p, integer* n, doublecomplex* a, integer* lda, doublecomplex* taua, doublecomplex* b, integer* ldb, doublecomplex* taub, doublecomplex* work, integer* lwork, integer* info);


static VALUE
rblapack_zggrqf(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_p;
  integer p; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_taua;
  doublecomplex *taua; 
  VALUE rblapack_taub;
  doublecomplex *taub; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;

  integer lda;
  integer n;
  integer ldb;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  taua, taub, work, info, a, b = NumRu::Lapack.zggrqf( m, p, a, b, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZGGRQF computes a generalized RQ factorization of an M-by-N matrix A\n*  and a P-by-N matrix B:\n*\n*              A = R*Q,        B = Z*T*Q,\n*\n*  where Q is an N-by-N unitary matrix, Z is a P-by-P unitary\n*  matrix, and R and T assume one of the forms:\n*\n*  if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N,\n*                   N-M  M                           ( R21 ) N\n*                                                       N\n*\n*  where R12 or R21 is upper triangular, and\n*\n*  if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P,\n*                  (  0  ) P-N                         P   N-P\n*                     N\n*\n*  where T11 is upper triangular.\n*\n*  In particular, if B is square and nonsingular, the GRQ factorization\n*  of A and B implicitly gives the RQ factorization of A*inv(B):\n*\n*               A*inv(B) = (R*inv(T))*Z'\n*\n*  where inv(B) denotes the inverse of the matrix B, and Z' denotes the\n*  conjugate transpose of the matrix Z.\n*\n\n*  Arguments\n*  =========\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix A.  M >= 0.\n*\n*  P       (input) INTEGER\n*          The number of rows of the matrix B.  P >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrices A and B. N >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n*          On entry, the M-by-N matrix A.\n*          On exit, if M <= N, the upper triangle of the subarray\n*          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;\n*          if M > N, the elements on and above the (M-N)-th subdiagonal\n*          contain the M-by-N upper trapezoidal matrix R; the remaining\n*          elements, with the array TAUA, represent the unitary\n*          matrix Q as a product of elementary reflectors (see Further\n*          Details).\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A. LDA >= max(1,M).\n*\n*  TAUA    (output) COMPLEX*16 array, dimension (min(M,N))\n*          The scalar factors of the elementary reflectors which\n*          represent the unitary matrix Q (see Further Details).\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB,N)\n*          On entry, the P-by-N matrix B.\n*          On exit, the elements on and above the diagonal of the array\n*          contain the min(P,N)-by-N upper trapezoidal matrix T (T is\n*          upper triangular if P >= N); the elements below the diagonal,\n*          with the array TAUB, represent the unitary matrix Z as a\n*          product of elementary reflectors (see Further Details).\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B. LDB >= max(1,P).\n*\n*  TAUB    (output) COMPLEX*16 array, dimension (min(P,N))\n*          The scalar factors of the elementary reflectors which\n*          represent the unitary matrix Z (see Further Details).\n*\n*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK. LWORK >= max(1,N,M,P).\n*          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),\n*          where NB1 is the optimal blocksize for the RQ factorization\n*          of an M-by-N matrix, NB2 is the optimal blocksize for the\n*          QR factorization of a P-by-N matrix, and NB3 is the optimal\n*          blocksize for a call of ZUNMRQ.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO=-i, the i-th argument had an illegal value.\n*\n\n*  Further Details\n*  ===============\n*\n*  The matrix Q is represented as a product of elementary reflectors\n*\n*     Q = H(1) H(2) . . . H(k), where k = min(m,n).\n*\n*  Each H(i) has the form\n*\n*     H(i) = I - taua * v * v'\n*\n*  where taua is a complex scalar, and v is a complex vector with\n*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in\n*  A(m-k+i,1:n-k+i-1), and taua in TAUA(i).\n*  To form Q explicitly, use LAPACK subroutine ZUNGRQ.\n*  To use Q to update another matrix, use LAPACK subroutine ZUNMRQ.\n*\n*  The matrix Z is represented as a product of elementary reflectors\n*\n*     Z = H(1) H(2) . . . H(k), where k = min(p,n).\n*\n*  Each H(i) has the form\n*\n*     H(i) = I - taub * v * v'\n*\n*  where taub is a complex scalar, and v is a complex vector with\n*  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),\n*  and taub in TAUB(i).\n*  To form Z explicitly, use LAPACK subroutine ZUNGQR.\n*  To use Z to update another matrix, use LAPACK subroutine ZUNMQR.\n*\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            LQUERY\n      INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           XERBLA, ZGEQRF, ZGERQF, ZUNMRQ\n*     ..\n*     .. External Functions ..\n      INTEGER            ILAENV\n      EXTERNAL           ILAENV\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          INT, MAX, MIN\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  taua, taub, work, info, a, b = NumRu::Lapack.zggrqf( m, p, a, b, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_m = argv[0];
  rblapack_p = argv[1];
  rblapack_a = argv[2];
  rblapack_b = argv[3];
  if (argc == 5) {
    rblapack_lwork = argv[4];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  m = NUM2INT(rblapack_m);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  p = NUM2INT(rblapack_p);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  if (rblapack_lwork == Qnil)
    lwork = MAX(MAX(n,m),p);
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = MIN(m,n);
    rblapack_taua = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  taua = NA_PTR_TYPE(rblapack_taua, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = MIN(p,n);
    rblapack_taub = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  taub = NA_PTR_TYPE(rblapack_taub, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  zggrqf_(&m, &p, &n, a, &lda, taua, b, &ldb, taub, work, &lwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(6, rblapack_taua, rblapack_taub, rblapack_work, rblapack_info, rblapack_a, rblapack_b);
}

void
init_lapack_zggrqf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zggrqf", rblapack_zggrqf, -1);
}