File: zhbgst.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (120 lines) | stat: -rw-r--r-- 6,762 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#include "rb_lapack.h"

extern VOID zhbgst_(char* vect, char* uplo, integer* n, integer* ka, integer* kb, doublecomplex* ab, integer* ldab, doublecomplex* bb, integer* ldbb, doublecomplex* x, integer* ldx, doublecomplex* work, doublereal* rwork, integer* info);


static VALUE
rblapack_zhbgst(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_vect;
  char vect; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_ka;
  integer ka; 
  VALUE rblapack_kb;
  integer kb; 
  VALUE rblapack_ab;
  doublecomplex *ab; 
  VALUE rblapack_bb;
  doublecomplex *bb; 
  VALUE rblapack_x;
  doublecomplex *x; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ab_out__;
  doublecomplex *ab_out__;
  doublecomplex *work;
  doublereal *rwork;

  integer ldab;
  integer n;
  integer ldbb;
  integer ldx;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, info, ab = NumRu::Lapack.zhbgst( vect, uplo, ka, kb, ab, bb, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZHBGST reduces a complex Hermitian-definite banded generalized\n*  eigenproblem  A*x = lambda*B*x  to standard form  C*y = lambda*y,\n*  such that C has the same bandwidth as A.\n*\n*  B must have been previously factorized as S**H*S by ZPBSTF, using a\n*  split Cholesky factorization. A is overwritten by C = X**H*A*X, where\n*  X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the\n*  bandwidth of A.\n*\n\n*  Arguments\n*  =========\n*\n*  VECT    (input) CHARACTER*1\n*          = 'N':  do not form the transformation matrix X;\n*          = 'V':  form X.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A and B.  N >= 0.\n*\n*  KA      (input) INTEGER\n*          The number of superdiagonals of the matrix A if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.\n*\n*  KB      (input) INTEGER\n*          The number of superdiagonals of the matrix B if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'.  KA >= KB >= 0.\n*\n*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)\n*          On entry, the upper or lower triangle of the Hermitian band\n*          matrix A, stored in the first ka+1 rows of the array.  The\n*          j-th column of A is stored in the j-th column of the array AB\n*          as follows:\n*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).\n*\n*          On exit, the transformed matrix X**H*A*X, stored in the same\n*          format as A.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= KA+1.\n*\n*  BB      (input) COMPLEX*16 array, dimension (LDBB,N)\n*          The banded factor S from the split Cholesky factorization of\n*          B, as returned by ZPBSTF, stored in the first kb+1 rows of\n*          the array.\n*\n*  LDBB    (input) INTEGER\n*          The leading dimension of the array BB.  LDBB >= KB+1.\n*\n*  X       (output) COMPLEX*16 array, dimension (LDX,N)\n*          If VECT = 'V', the n-by-n matrix X.\n*          If VECT = 'N', the array X is not referenced.\n*\n*  LDX     (input) INTEGER\n*          The leading dimension of the array X.\n*          LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.\n*\n*  WORK    (workspace) COMPLEX*16 array, dimension (N)\n*\n*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, info, ab = NumRu::Lapack.zhbgst( vect, uplo, ka, kb, ab, bb, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 6 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
  rblapack_vect = argv[0];
  rblapack_uplo = argv[1];
  rblapack_ka = argv[2];
  rblapack_kb = argv[3];
  rblapack_ab = argv[4];
  rblapack_bb = argv[5];
  if (argc == 6) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  vect = StringValueCStr(rblapack_vect)[0];
  ka = NUM2INT(rblapack_ka);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_DCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_DCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, doublecomplex*);
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_bb))
    rb_raise(rb_eArgError, "bb (6th argument) must be NArray");
  if (NA_RANK(rblapack_bb) != 2)
    rb_raise(rb_eArgError, "rank of bb (6th argument) must be %d", 2);
  ldbb = NA_SHAPE0(rblapack_bb);
  if (NA_SHAPE1(rblapack_bb) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of bb must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_bb) != NA_DCOMPLEX)
    rblapack_bb = na_change_type(rblapack_bb, NA_DCOMPLEX);
  bb = NA_PTR_TYPE(rblapack_bb, doublecomplex*);
  kb = NUM2INT(rblapack_kb);
  ldx = lsame_(&vect,"V") ? MAX(1,n) : 1;
  {
    na_shape_t shape[2];
    shape[0] = ldx;
    shape[1] = n;
    rblapack_x = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  x = NA_PTR_TYPE(rblapack_x, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, doublecomplex*);
  MEMCPY(ab_out__, ab, doublecomplex, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;
  work = ALLOC_N(doublecomplex, (n));
  rwork = ALLOC_N(doublereal, (n));

  zhbgst_(&vect, &uplo, &n, &ka, &kb, ab, &ldab, bb, &ldbb, x, &ldx, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(3, rblapack_x, rblapack_info, rblapack_ab);
}

void
init_lapack_zhbgst(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zhbgst", rblapack_zhbgst, -1);
}