1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
#include "rb_lapack.h"
extern VOID zhbgst_(char* vect, char* uplo, integer* n, integer* ka, integer* kb, doublecomplex* ab, integer* ldab, doublecomplex* bb, integer* ldbb, doublecomplex* x, integer* ldx, doublecomplex* work, doublereal* rwork, integer* info);
static VALUE
rblapack_zhbgst(int argc, VALUE *argv, VALUE self){
VALUE rblapack_vect;
char vect;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ka;
integer ka;
VALUE rblapack_kb;
integer kb;
VALUE rblapack_ab;
doublecomplex *ab;
VALUE rblapack_bb;
doublecomplex *bb;
VALUE rblapack_x;
doublecomplex *x;
VALUE rblapack_info;
integer info;
VALUE rblapack_ab_out__;
doublecomplex *ab_out__;
doublecomplex *work;
doublereal *rwork;
integer ldab;
integer n;
integer ldbb;
integer ldx;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n x, info, ab = NumRu::Lapack.zhbgst( vect, uplo, ka, kb, ab, bb, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZHBGST reduces a complex Hermitian-definite banded generalized\n* eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,\n* such that C has the same bandwidth as A.\n*\n* B must have been previously factorized as S**H*S by ZPBSTF, using a\n* split Cholesky factorization. A is overwritten by C = X**H*A*X, where\n* X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the\n* bandwidth of A.\n*\n\n* Arguments\n* =========\n*\n* VECT (input) CHARACTER*1\n* = 'N': do not form the transformation matrix X;\n* = 'V': form X.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* KA (input) INTEGER\n* The number of superdiagonals of the matrix A if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KA >= 0.\n*\n* KB (input) INTEGER\n* The number of superdiagonals of the matrix B if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.\n*\n* AB (input/output) COMPLEX*16 array, dimension (LDAB,N)\n* On entry, the upper or lower triangle of the Hermitian band\n* matrix A, stored in the first ka+1 rows of the array. The\n* j-th column of A is stored in the j-th column of the array AB\n* as follows:\n* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).\n*\n* On exit, the transformed matrix X**H*A*X, stored in the same\n* format as A.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KA+1.\n*\n* BB (input) COMPLEX*16 array, dimension (LDBB,N)\n* The banded factor S from the split Cholesky factorization of\n* B, as returned by ZPBSTF, stored in the first kb+1 rows of\n* the array.\n*\n* LDBB (input) INTEGER\n* The leading dimension of the array BB. LDBB >= KB+1.\n*\n* X (output) COMPLEX*16 array, dimension (LDX,N)\n* If VECT = 'V', the n-by-n matrix X.\n* If VECT = 'N', the array X is not referenced.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X.\n* LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.\n*\n* WORK (workspace) COMPLEX*16 array, dimension (N)\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n x, info, ab = NumRu::Lapack.zhbgst( vect, uplo, ka, kb, ab, bb, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_vect = argv[0];
rblapack_uplo = argv[1];
rblapack_ka = argv[2];
rblapack_kb = argv[3];
rblapack_ab = argv[4];
rblapack_bb = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
vect = StringValueCStr(rblapack_vect)[0];
ka = NUM2INT(rblapack_ka);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_DCOMPLEX)
rblapack_ab = na_change_type(rblapack_ab, NA_DCOMPLEX);
ab = NA_PTR_TYPE(rblapack_ab, doublecomplex*);
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_bb))
rb_raise(rb_eArgError, "bb (6th argument) must be NArray");
if (NA_RANK(rblapack_bb) != 2)
rb_raise(rb_eArgError, "rank of bb (6th argument) must be %d", 2);
ldbb = NA_SHAPE0(rblapack_bb);
if (NA_SHAPE1(rblapack_bb) != n)
rb_raise(rb_eRuntimeError, "shape 1 of bb must be the same as shape 1 of ab");
if (NA_TYPE(rblapack_bb) != NA_DCOMPLEX)
rblapack_bb = na_change_type(rblapack_bb, NA_DCOMPLEX);
bb = NA_PTR_TYPE(rblapack_bb, doublecomplex*);
kb = NUM2INT(rblapack_kb);
ldx = lsame_(&vect,"V") ? MAX(1,n) : 1;
{
na_shape_t shape[2];
shape[0] = ldx;
shape[1] = n;
rblapack_x = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
x = NA_PTR_TYPE(rblapack_x, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, doublecomplex*);
MEMCPY(ab_out__, ab, doublecomplex, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
work = ALLOC_N(doublecomplex, (n));
rwork = ALLOC_N(doublereal, (n));
zhbgst_(&vect, &uplo, &n, &ka, &kb, ab, &ldab, bb, &ldbb, x, &ldx, work, rwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_x, rblapack_info, rblapack_ab);
}
void
init_lapack_zhbgst(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zhbgst", rblapack_zhbgst, -1);
}
|