1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
#include "rb_lapack.h"
extern VOID zheevr_(char* jobz, char* range, char* uplo, integer* n, doublecomplex* a, integer* lda, doublereal* vl, doublereal* vu, integer* il, integer* iu, doublereal* abstol, integer* m, doublereal* w, doublecomplex* z, integer* ldz, integer* isuppz, doublecomplex* work, integer* lwork, doublereal* rwork, integer* lrwork, integer* iwork, integer* liwork, integer* info);
static VALUE
rblapack_zheevr(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_range;
char range;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_vl;
doublereal vl;
VALUE rblapack_vu;
doublereal vu;
VALUE rblapack_il;
integer il;
VALUE rblapack_iu;
integer iu;
VALUE rblapack_abstol;
doublereal abstol;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_lrwork;
integer lrwork;
VALUE rblapack_liwork;
integer liwork;
VALUE rblapack_m;
integer m;
VALUE rblapack_w;
doublereal *w;
VALUE rblapack_z;
doublecomplex *z;
VALUE rblapack_isuppz;
integer *isuppz;
VALUE rblapack_work;
doublecomplex *work;
VALUE rblapack_rwork;
doublereal *rwork;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
doublecomplex *a_out__;
integer lda;
integer n;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n m, w, z, isuppz, work, rwork, iwork, info, a = NumRu::Lapack.zheevr( jobz, range, uplo, a, vl, vu, il, iu, abstol, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZHEEVR computes selected eigenvalues and, optionally, eigenvectors\n* of a complex Hermitian matrix A. Eigenvalues and eigenvectors can\n* be selected by specifying either a range of values or a range of\n* indices for the desired eigenvalues.\n*\n* ZHEEVR first reduces the matrix A to tridiagonal form T with a call\n* to ZHETRD. Then, whenever possible, ZHEEVR calls ZSTEMR to compute\n* eigenspectrum using Relatively Robust Representations. ZSTEMR\n* computes eigenvalues by the dqds algorithm, while orthogonal\n* eigenvectors are computed from various \"good\" L D L^T representations\n* (also known as Relatively Robust Representations). Gram-Schmidt\n* orthogonalization is avoided as far as possible. More specifically,\n* the various steps of the algorithm are as follows.\n*\n* For each unreduced block (submatrix) of T,\n* (a) Compute T - sigma I = L D L^T, so that L and D\n* define all the wanted eigenvalues to high relative accuracy.\n* This means that small relative changes in the entries of D and L\n* cause only small relative changes in the eigenvalues and\n* eigenvectors. The standard (unfactored) representation of the\n* tridiagonal matrix T does not have this property in general.\n* (b) Compute the eigenvalues to suitable accuracy.\n* If the eigenvectors are desired, the algorithm attains full\n* accuracy of the computed eigenvalues only right before\n* the corresponding vectors have to be computed, see steps c) and d).\n* (c) For each cluster of close eigenvalues, select a new\n* shift close to the cluster, find a new factorization, and refine\n* the shifted eigenvalues to suitable accuracy.\n* (d) For each eigenvalue with a large enough relative separation compute\n* the corresponding eigenvector by forming a rank revealing twisted\n* factorization. Go back to (c) for any clusters that remain.\n*\n* The desired accuracy of the output can be specified by the input\n* parameter ABSTOL.\n*\n* For more details, see DSTEMR's documentation and:\n* - Inderjit S. Dhillon and Beresford N. Parlett: \"Multiple representations\n* to compute orthogonal eigenvectors of symmetric tridiagonal matrices,\"\n* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.\n* - Inderjit Dhillon and Beresford Parlett: \"Orthogonal Eigenvectors and\n* Relative Gaps,\" SIAM Journal on Matrix Analysis and Applications, Vol. 25,\n* 2004. Also LAPACK Working Note 154.\n* - Inderjit Dhillon: \"A new O(n^2) algorithm for the symmetric\n* tridiagonal eigenvalue/eigenvector problem\",\n* Computer Science Division Technical Report No. UCB/CSD-97-971,\n* UC Berkeley, May 1997.\n*\n*\n* Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested\n* on machines which conform to the ieee-754 floating point standard.\n* ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and\n* when partial spectrum requests are made.\n*\n* Normal execution of ZSTEMR may create NaNs and infinities and\n* hence may abort due to a floating point exception in environments\n* which do not handle NaNs and infinities in the ieee standard default\n* manner.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* RANGE (input) CHARACTER*1\n* = 'A': all eigenvalues will be found.\n* = 'V': all eigenvalues in the half-open interval (VL,VU]\n* will be found.\n* = 'I': the IL-th through IU-th eigenvalues will be found.\n********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and\n********** ZSTEIN are called\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) COMPLEX*16 array, dimension (LDA, N)\n* On entry, the Hermitian matrix A. If UPLO = 'U', the\n* leading N-by-N upper triangular part of A contains the\n* upper triangular part of the matrix A. If UPLO = 'L',\n* the leading N-by-N lower triangular part of A contains\n* the lower triangular part of the matrix A.\n* On exit, the lower triangle (if UPLO='L') or the upper\n* triangle (if UPLO='U') of A, including the diagonal, is\n* destroyed.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* VL (input) DOUBLE PRECISION\n* VU (input) DOUBLE PRECISION\n* If RANGE='V', the lower and upper bounds of the interval to\n* be searched for eigenvalues. VL < VU.\n* Not referenced if RANGE = 'A' or 'I'.\n*\n* IL (input) INTEGER\n* IU (input) INTEGER\n* If RANGE='I', the indices (in ascending order) of the\n* smallest and largest eigenvalues to be returned.\n* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n* Not referenced if RANGE = 'A' or 'V'.\n*\n* ABSTOL (input) DOUBLE PRECISION\n* The absolute error tolerance for the eigenvalues.\n* An approximate eigenvalue is accepted as converged\n* when it is determined to lie in an interval [a,b]\n* of width less than or equal to\n*\n* ABSTOL + EPS * max( |a|,|b| ) ,\n*\n* where EPS is the machine precision. If ABSTOL is less than\n* or equal to zero, then EPS*|T| will be used in its place,\n* where |T| is the 1-norm of the tridiagonal matrix obtained\n* by reducing A to tridiagonal form.\n*\n* See \"Computing Small Singular Values of Bidiagonal Matrices\n* with Guaranteed High Relative Accuracy,\" by Demmel and\n* Kahan, LAPACK Working Note #3.\n*\n* If high relative accuracy is important, set ABSTOL to\n* DLAMCH( 'Safe minimum' ). Doing so will guarantee that\n* eigenvalues are computed to high relative accuracy when\n* possible in future releases. The current code does not\n* make any guarantees about high relative accuracy, but\n* furutre releases will. See J. Barlow and J. Demmel,\n* \"Computing Accurate Eigensystems of Scaled Diagonally\n* Dominant Matrices\", LAPACK Working Note #7, for a discussion\n* of which matrices define their eigenvalues to high relative\n* accuracy.\n*\n* M (output) INTEGER\n* The total number of eigenvalues found. 0 <= M <= N.\n* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n*\n* W (output) DOUBLE PRECISION array, dimension (N)\n* The first M elements contain the selected eigenvalues in\n* ascending order.\n*\n* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M))\n* If JOBZ = 'V', then if INFO = 0, the first M columns of Z\n* contain the orthonormal eigenvectors of the matrix A\n* corresponding to the selected eigenvalues, with the i-th\n* column of Z holding the eigenvector associated with W(i).\n* If JOBZ = 'N', then Z is not referenced.\n* Note: the user must ensure that at least max(1,M) columns are\n* supplied in the array Z; if RANGE = 'V', the exact value of M\n* is not known in advance and an upper bound must be used.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )\n* The support of the eigenvectors in Z, i.e., the indices\n* indicating the nonzero elements in Z. The i-th eigenvector\n* is nonzero only in elements ISUPPZ( 2*i-1 ) through\n* ISUPPZ( 2*i ).\n********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1\n*\n* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The length of the array WORK. LWORK >= max(1,2*N).\n* For optimal efficiency, LWORK >= (NB+1)*N,\n* where NB is the max of the blocksize for ZHETRD and for\n* ZUNMTR as returned by ILAENV.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal sizes of the WORK, RWORK and\n* IWORK arrays, returns these values as the first entries of\n* the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* RWORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))\n* On exit, if INFO = 0, RWORK(1) returns the optimal\n* (and minimal) LRWORK.\n*\n* LRWORK (input) INTEGER\n* The length of the array RWORK. LRWORK >= max(1,24*N).\n*\n* If LRWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal sizes of the WORK, RWORK\n* and IWORK arrays, returns these values as the first entries\n* of the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n* On exit, if INFO = 0, IWORK(1) returns the optimal\n* (and minimal) LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of the array IWORK. LIWORK >= max(1,10*N).\n*\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal sizes of the WORK, RWORK\n* and IWORK arrays, returns these values as the first entries\n* of the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: Internal error\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Inderjit Dhillon, IBM Almaden, USA\n* Osni Marques, LBNL/NERSC, USA\n* Ken Stanley, Computer Science Division, University of\n* California at Berkeley, USA\n* Jason Riedy, Computer Science Division, University of\n* California at Berkeley, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n m, w, z, isuppz, work, rwork, iwork, info, a = NumRu::Lapack.zheevr( jobz, range, uplo, a, vl, vu, il, iu, abstol, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 9 && argc != 12)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
rblapack_jobz = argv[0];
rblapack_range = argv[1];
rblapack_uplo = argv[2];
rblapack_a = argv[3];
rblapack_vl = argv[4];
rblapack_vu = argv[5];
rblapack_il = argv[6];
rblapack_iu = argv[7];
rblapack_abstol = argv[8];
if (argc == 12) {
rblapack_lwork = argv[9];
rblapack_lrwork = argv[10];
rblapack_liwork = argv[11];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
rblapack_lrwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lrwork")));
rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
} else {
rblapack_lwork = Qnil;
rblapack_lrwork = Qnil;
rblapack_liwork = Qnil;
}
jobz = StringValueCStr(rblapack_jobz)[0];
uplo = StringValueCStr(rblapack_uplo)[0];
vl = NUM2DBL(rblapack_vl);
il = NUM2INT(rblapack_il);
abstol = NUM2DBL(rblapack_abstol);
range = StringValueCStr(rblapack_range)[0];
vu = NUM2DBL(rblapack_vu);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
if (rblapack_lwork == Qnil)
lwork = 2*n;
else {
lwork = NUM2INT(rblapack_lwork);
}
if (rblapack_liwork == Qnil)
liwork = 10*n;
else {
liwork = NUM2INT(rblapack_liwork);
}
iu = NUM2INT(rblapack_iu);
ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
if (rblapack_lrwork == Qnil)
lrwork = 24*n;
else {
lrwork = NUM2INT(rblapack_lrwork);
}
m = lsame_(&range,"A") ? n : lsame_(&range,"I") ? iu-il+1 : 0;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = MAX(1,m);
rblapack_z = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = 2*MAX(1,m);
rblapack_isuppz = na_make_object(NA_LINT, 1, shape, cNArray);
}
isuppz = NA_PTR_TYPE(rblapack_isuppz, integer*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lrwork);
rblapack_rwork = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
rwork = NA_PTR_TYPE(rblapack_rwork, doublereal*);
{
na_shape_t shape[1];
shape[0] = MAX(1,liwork);
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
zheevr_(&jobz, &range, &uplo, &n, a, &lda, &vl, &vu, &il, &iu, &abstol, &m, w, z, &ldz, isuppz, work, &lwork, rwork, &lrwork, iwork, &liwork, &info);
rblapack_m = INT2NUM(m);
rblapack_info = INT2NUM(info);
return rb_ary_new3(9, rblapack_m, rblapack_w, rblapack_z, rblapack_isuppz, rblapack_work, rblapack_rwork, rblapack_iwork, rblapack_info, rblapack_a);
}
void
init_lapack_zheevr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zheevr", rblapack_zheevr, -1);
}
|