File: zhegvd.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (173 lines) | stat: -rw-r--r-- 12,816 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include "rb_lapack.h"

extern VOID zhegvd_(integer* itype, char* jobz, char* uplo, integer* n, doublecomplex* a, integer* lda, doublecomplex* b, integer* ldb, doublereal* w, doublecomplex* work, integer* lwork, doublereal* rwork, integer* lrwork, integer* iwork, integer* liwork, integer* info);


static VALUE
rblapack_zhegvd(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_itype;
  integer itype; 
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_lrwork;
  integer lrwork; 
  VALUE rblapack_liwork;
  integer liwork; 
  VALUE rblapack_w;
  doublereal *w; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_rwork;
  doublereal *rwork; 
  VALUE rblapack_iwork;
  integer *iwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;

  integer lda;
  integer n;
  integer ldb;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, work, rwork, iwork, info, a, b = NumRu::Lapack.zhegvd( itype, jobz, uplo, a, b, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors\n*  of a complex generalized Hermitian-definite eigenproblem, of the form\n*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and\n*  B are assumed to be Hermitian and B is also positive definite.\n*  If eigenvectors are desired, it uses a divide and conquer algorithm.\n*\n*  The divide and conquer algorithm makes very mild assumptions about\n*  floating point arithmetic. It will work on machines with a guard\n*  digit in add/subtract, or on those binary machines without guard\n*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n*  Cray-2. It could conceivably fail on hexadecimal or decimal machines\n*  without guard digits, but we know of none.\n*\n\n*  Arguments\n*  =========\n*\n*  ITYPE   (input) INTEGER\n*          Specifies the problem type to be solved:\n*          = 1:  A*x = (lambda)*B*x\n*          = 2:  A*B*x = (lambda)*x\n*          = 3:  B*A*x = (lambda)*x\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangles of A and B are stored;\n*          = 'L':  Lower triangles of A and B are stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A and B.  N >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA, N)\n*          On entry, the Hermitian matrix A.  If UPLO = 'U', the\n*          leading N-by-N upper triangular part of A contains the\n*          upper triangular part of the matrix A.  If UPLO = 'L',\n*          the leading N-by-N lower triangular part of A contains\n*          the lower triangular part of the matrix A.\n*\n*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n*          matrix Z of eigenvectors.  The eigenvectors are normalized\n*          as follows:\n*          if ITYPE = 1 or 2, Z**H*B*Z = I;\n*          if ITYPE = 3, Z**H*inv(B)*Z = I.\n*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')\n*          or the lower triangle (if UPLO='L') of A, including the\n*          diagonal, is destroyed.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB, N)\n*          On entry, the Hermitian matrix B.  If UPLO = 'U', the\n*          leading N-by-N upper triangular part of B contains the\n*          upper triangular part of the matrix B.  If UPLO = 'L',\n*          the leading N-by-N lower triangular part of B contains\n*          the lower triangular part of the matrix B.\n*\n*          On exit, if INFO <= N, the part of B containing the matrix is\n*          overwritten by the triangular factor U or L from the Cholesky\n*          factorization B = U**H*U or B = L*L**H.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  W       (output) DOUBLE PRECISION array, dimension (N)\n*          If INFO = 0, the eigenvalues in ascending order.\n*\n*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The length of the array WORK.\n*          If N <= 1,                LWORK >= 1.\n*          If JOBZ  = 'N' and N > 1, LWORK >= N + 1.\n*          If JOBZ  = 'V' and N > 1, LWORK >= 2*N + N**2.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal sizes of the WORK, RWORK and\n*          IWORK arrays, returns these values as the first entries of\n*          the WORK, RWORK and IWORK arrays, and no error message\n*          related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n*  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))\n*          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.\n*\n*  LRWORK  (input) INTEGER\n*          The dimension of the array RWORK.\n*          If N <= 1,                LRWORK >= 1.\n*          If JOBZ  = 'N' and N > 1, LRWORK >= N.\n*          If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.\n*\n*          If LRWORK = -1, then a workspace query is assumed; the\n*          routine only calculates the optimal sizes of the WORK, RWORK\n*          and IWORK arrays, returns these values as the first entries\n*          of the WORK, RWORK and IWORK arrays, and no error message\n*          related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n*\n*  LIWORK  (input) INTEGER\n*          The dimension of the array IWORK.\n*          If N <= 1,                LIWORK >= 1.\n*          If JOBZ  = 'N' and N > 1, LIWORK >= 1.\n*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.\n*\n*          If LIWORK = -1, then a workspace query is assumed; the\n*          routine only calculates the optimal sizes of the WORK, RWORK\n*          and IWORK arrays, returns these values as the first entries\n*          of the WORK, RWORK and IWORK arrays, and no error message\n*          related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  ZPOTRF or ZHEEVD returned an error code:\n*             <= N:  if INFO = i and JOBZ = 'N', then the algorithm\n*                    failed to converge; i off-diagonal elements of an\n*                    intermediate tridiagonal form did not converge to\n*                    zero;\n*                    if INFO = i and JOBZ = 'V', then the algorithm\n*                    failed to compute an eigenvalue while working on\n*                    the submatrix lying in rows and columns INFO/(N+1)\n*                    through mod(INFO,N+1);\n*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading\n*                    minor of order i of B is not positive definite.\n*                    The factorization of B could not be completed and\n*                    no eigenvalues or eigenvectors were computed.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n*\n*  Modified so that no backsubstitution is performed if ZHEEVD fails to\n*  converge (NEIG in old code could be greater than N causing out of\n*  bounds reference to A - reported by Ralf Meyer).  Also corrected the\n*  description of INFO and the test on ITYPE. Sven, 16 Feb 05.\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, work, rwork, iwork, info, a, b = NumRu::Lapack.zhegvd( itype, jobz, uplo, a, b, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_itype = argv[0];
  rblapack_jobz = argv[1];
  rblapack_uplo = argv[2];
  rblapack_a = argv[3];
  rblapack_b = argv[4];
  if (argc == 8) {
    rblapack_lwork = argv[5];
    rblapack_lrwork = argv[6];
    rblapack_liwork = argv[7];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
    rblapack_lrwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lrwork")));
    rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
  } else {
    rblapack_lwork = Qnil;
    rblapack_lrwork = Qnil;
    rblapack_liwork = Qnil;
  }

  itype = NUM2INT(rblapack_itype);
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (5th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  n = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  jobz = StringValueCStr(rblapack_jobz)[0];
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (4th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of b");
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  if (rblapack_lrwork == Qnil)
    lrwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n : lsame_(&jobz,"V") ? 1+5*n+2*n*n : 0;
  else {
    lrwork = NUM2INT(rblapack_lrwork);
  }
  if (rblapack_lwork == Qnil)
    lwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n+1 : lsame_(&jobz,"V") ? 2*n+n*n : 0;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  if (rblapack_liwork == Qnil)
    liwork = n<=1 ? 1 : lsame_(&jobz,"N") ? 1 : lsame_(&jobz,"V") ? 3+5*n : 0;
  else {
    liwork = NUM2INT(rblapack_liwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lrwork);
    rblapack_rwork = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  rwork = NA_PTR_TYPE(rblapack_rwork, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,liwork);
    rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  zhegvd_(&itype, &jobz, &uplo, &n, a, &lda, b, &ldb, w, work, &lwork, rwork, &lrwork, iwork, &liwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(7, rblapack_w, rblapack_work, rblapack_rwork, rblapack_iwork, rblapack_info, rblapack_a, rblapack_b);
}

void
init_lapack_zhegvd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zhegvd", rblapack_zhegvd, -1);
}