File: zhesv.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (123 lines) | stat: -rw-r--r-- 8,315 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include "rb_lapack.h"

extern VOID zhesv_(char* uplo, integer* n, integer* nrhs, doublecomplex* a, integer* lda, integer* ipiv, doublecomplex* b, integer* ldb, doublecomplex* work, integer* lwork, integer* info);


static VALUE
rblapack_zhesv(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;

  integer lda;
  integer n;
  integer ldb;
  integer nrhs;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  ipiv, work, info, a, b = NumRu::Lapack.zhesv( uplo, a, b, lwork, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZHESV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZHESV computes the solution to a complex system of linear equations\n*     A * X = B,\n*  where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS\n*  matrices.\n*\n*  The diagonal pivoting method is used to factor A as\n*     A = U * D * U**H,  if UPLO = 'U', or\n*     A = L * D * L**H,  if UPLO = 'L',\n*  where U (or L) is a product of permutation and unit upper (lower)\n*  triangular matrices, and D is Hermitian and block diagonal with\n*  1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then\n*  used to solve the system of equations A * X = B.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The number of linear equations, i.e., the order of the\n*          matrix A.  N >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrix B.  NRHS >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n*          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading\n*          N-by-N upper triangular part of A contains the upper\n*          triangular part of the matrix A, and the strictly lower\n*          triangular part of A is not referenced.  If UPLO = 'L', the\n*          leading N-by-N lower triangular part of A contains the lower\n*          triangular part of the matrix A, and the strictly upper\n*          triangular part of A is not referenced.\n*\n*          On exit, if INFO = 0, the block diagonal matrix D and the\n*          multipliers used to obtain the factor U or L from the\n*          factorization A = U*D*U**H or A = L*D*L**H as computed by\n*          ZHETRF.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  IPIV    (output) INTEGER array, dimension (N)\n*          Details of the interchanges and the block structure of D, as\n*          determined by ZHETRF.  If IPIV(k) > 0, then rows and columns\n*          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1\n*          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,\n*          then rows and columns k-1 and -IPIV(k) were interchanged and\n*          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and\n*          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and\n*          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2\n*          diagonal block.\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n*          On entry, the N-by-NRHS right hand side matrix B.\n*          On exit, if INFO = 0, the N-by-NRHS solution matrix X.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The length of WORK.  LWORK >= 1, and for best performance\n*          LWORK >= max(1,N*NB), where NB is the optimal blocksize for\n*          ZHETRF.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -i, the i-th argument had an illegal value\n*          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization\n*               has been completed, but the block diagonal matrix D is\n*               exactly singular, so the solution could not be computed.\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            LQUERY\n      INTEGER            LWKOPT, NB\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      INTEGER            ILAENV\n      EXTERNAL           LSAME, ILAENV\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           XERBLA, ZHETRF, ZHETRS2\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          MAX\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  ipiv, work, info, a, b = NumRu::Lapack.zhesv( uplo, a, b, lwork, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_uplo = argv[0];
  rblapack_a = argv[1];
  rblapack_b = argv[2];
  rblapack_lwork = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (3th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (3th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (2th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  lwork = NUM2INT(rblapack_lwork);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_ipiv = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  zhesv_(&uplo, &n, &nrhs, a, &lda, ipiv, b, &ldb, work, &lwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(5, rblapack_ipiv, rblapack_work, rblapack_info, rblapack_a, rblapack_b);
}

void
init_lapack_zhesv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zhesv", rblapack_zhesv, -1);
}