1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
#include "rb_lapack.h"
extern VOID zhetd2_(char* uplo, integer* n, doublecomplex* a, integer* lda, doublereal* d, doublereal* e, doublecomplex* tau, integer* info);
static VALUE
rblapack_zhetd2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_e;
doublereal *e;
VALUE rblapack_tau;
doublecomplex *tau;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
doublecomplex *a_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n d, e, tau, info, a = NumRu::Lapack.zhetd2( uplo, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )\n\n* Purpose\n* =======\n*\n* ZHETD2 reduces a complex Hermitian matrix A to real symmetric\n* tridiagonal form T by a unitary similarity transformation:\n* Q' * A * Q = T.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* Specifies whether the upper or lower triangular part of the\n* Hermitian matrix A is stored:\n* = 'U': Upper triangular\n* = 'L': Lower triangular\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n* On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n* n-by-n upper triangular part of A contains the upper\n* triangular part of the matrix A, and the strictly lower\n* triangular part of A is not referenced. If UPLO = 'L', the\n* leading n-by-n lower triangular part of A contains the lower\n* triangular part of the matrix A, and the strictly upper\n* triangular part of A is not referenced.\n* On exit, if UPLO = 'U', the diagonal and first superdiagonal\n* of A are overwritten by the corresponding elements of the\n* tridiagonal matrix T, and the elements above the first\n* superdiagonal, with the array TAU, represent the unitary\n* matrix Q as a product of elementary reflectors; if UPLO\n* = 'L', the diagonal and first subdiagonal of A are over-\n* written by the corresponding elements of the tridiagonal\n* matrix T, and the elements below the first subdiagonal, with\n* the array TAU, represent the unitary matrix Q as a product\n* of elementary reflectors. See Further Details.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* D (output) DOUBLE PRECISION array, dimension (N)\n* The diagonal elements of the tridiagonal matrix T:\n* D(i) = A(i,i).\n*\n* E (output) DOUBLE PRECISION array, dimension (N-1)\n* The off-diagonal elements of the tridiagonal matrix T:\n* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.\n*\n* TAU (output) COMPLEX*16 array, dimension (N-1)\n* The scalar factors of the elementary reflectors (see Further\n* Details).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* Further Details\n* ===============\n*\n* If UPLO = 'U', the matrix Q is represented as a product of elementary\n* reflectors\n*\n* Q = H(n-1) . . . H(2) H(1).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a complex scalar, and v is a complex vector with\n* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in\n* A(1:i-1,i+1), and tau in TAU(i).\n*\n* If UPLO = 'L', the matrix Q is represented as a product of elementary\n* reflectors\n*\n* Q = H(1) H(2) . . . H(n-1).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a complex scalar, and v is a complex vector with\n* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),\n* and tau in TAU(i).\n*\n* The contents of A on exit are illustrated by the following examples\n* with n = 5:\n*\n* if UPLO = 'U': if UPLO = 'L':\n*\n* ( d e v2 v3 v4 ) ( d )\n* ( d e v3 v4 ) ( e d )\n* ( d e v4 ) ( v1 e d )\n* ( d e ) ( v1 v2 e d )\n* ( d ) ( v1 v2 v3 e d )\n*\n* where d and e denote diagonal and off-diagonal elements of T, and vi\n* denotes an element of the vector defining H(i).\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n d, e, tau, info, a = NumRu::Lapack.zhetd2( uplo, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
d = NA_PTR_TYPE(rblapack_d, doublereal*);
{
na_shape_t shape[1];
shape[0] = n-1;
rblapack_e = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
e = NA_PTR_TYPE(rblapack_e, doublereal*);
{
na_shape_t shape[1];
shape[0] = n-1;
rblapack_tau = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
tau = NA_PTR_TYPE(rblapack_tau, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
zhetd2_(&uplo, &n, a, &lda, d, e, tau, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_d, rblapack_e, rblapack_tau, rblapack_info, rblapack_a);
}
void
init_lapack_zhetd2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zhetd2", rblapack_zhetd2, -1);
}
|