1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
#include "rb_lapack.h"
extern VOID zhfrk_(char* transr, char* uplo, char* trans, integer* n, integer* k, doublereal* alpha, doublecomplex* a, integer* lda, doublereal* beta, doublecomplex* c);
static VALUE
rblapack_zhfrk(int argc, VALUE *argv, VALUE self){
VALUE rblapack_transr;
char transr;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_trans;
char trans;
VALUE rblapack_k;
integer k;
VALUE rblapack_alpha;
doublereal alpha;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_beta;
doublereal beta;
VALUE rblapack_c;
doublecomplex *c;
VALUE rblapack_c_out__;
doublecomplex *c_out__;
integer ldc;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.zhfrk( transr, uplo, trans, k, alpha, a, beta, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C )\n\n* Purpose\n* =======\n*\n* Level 3 BLAS like routine for C in RFP Format.\n*\n* ZHFRK performs one of the Hermitian rank--k operations\n*\n* C := alpha*A*conjg( A' ) + beta*C,\n*\n* or\n*\n* C := alpha*conjg( A' )*A + beta*C,\n*\n* where alpha and beta are real scalars, C is an n--by--n Hermitian\n* matrix and A is an n--by--k matrix in the first case and a k--by--n\n* matrix in the second case.\n*\n\n* Arguments\n* ==========\n*\n* TRANSR (input) CHARACTER*1\n* = 'N': The Normal Form of RFP A is stored;\n* = 'C': The Conjugate-transpose Form of RFP A is stored.\n*\n* UPLO (input) CHARACTER*1\n* On entry, UPLO specifies whether the upper or lower\n* triangular part of the array C is to be referenced as\n* follows:\n*\n* UPLO = 'U' or 'u' Only the upper triangular part of C\n* is to be referenced.\n*\n* UPLO = 'L' or 'l' Only the lower triangular part of C\n* is to be referenced.\n*\n* Unchanged on exit.\n*\n* TRANS (input) CHARACTER*1\n* On entry, TRANS specifies the operation to be performed as\n* follows:\n*\n* TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C.\n*\n* TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C.\n*\n* Unchanged on exit.\n*\n* N (input) INTEGER\n* On entry, N specifies the order of the matrix C. N must be\n* at least zero.\n* Unchanged on exit.\n*\n* K (input) INTEGER\n* On entry with TRANS = 'N' or 'n', K specifies the number\n* of columns of the matrix A, and on entry with\n* TRANS = 'C' or 'c', K specifies the number of rows of the\n* matrix A. K must be at least zero.\n* Unchanged on exit.\n*\n* ALPHA (input) DOUBLE PRECISION\n* On entry, ALPHA specifies the scalar alpha.\n* Unchanged on exit.\n*\n* A (input) COMPLEX*16 array of DIMENSION (LDA,ka)\n* where KA\n* is K when TRANS = 'N' or 'n', and is N otherwise. Before\n* entry with TRANS = 'N' or 'n', the leading N--by--K part of\n* the array A must contain the matrix A, otherwise the leading\n* K--by--N part of the array A must contain the matrix A.\n* Unchanged on exit.\n*\n* LDA (input) INTEGER\n* On entry, LDA specifies the first dimension of A as declared\n* in the calling (sub) program. When TRANS = 'N' or 'n'\n* then LDA must be at least max( 1, n ), otherwise LDA must\n* be at least max( 1, k ).\n* Unchanged on exit.\n*\n* BETA (input) DOUBLE PRECISION\n* On entry, BETA specifies the scalar beta.\n* Unchanged on exit.\n*\n* C (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n* On entry, the matrix A in RFP Format. RFP Format is\n* described by TRANSR, UPLO and N. Note that the imaginary\n* parts of the diagonal elements need not be set, they are\n* assumed to be zero, and on exit they are set to zero.\n*\n* Arguments\n* ==========\n*\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.zhfrk( transr, uplo, trans, k, alpha, a, beta, c, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 8 && argc != 8)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
rblapack_transr = argv[0];
rblapack_uplo = argv[1];
rblapack_trans = argv[2];
rblapack_k = argv[3];
rblapack_alpha = argv[4];
rblapack_a = argv[5];
rblapack_beta = argv[6];
rblapack_c = argv[7];
if (argc == 8) {
} else if (rblapack_options != Qnil) {
} else {
}
transr = StringValueCStr(rblapack_transr)[0];
trans = StringValueCStr(rblapack_trans)[0];
alpha = NUM2DBL(rblapack_alpha);
beta = NUM2DBL(rblapack_beta);
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (8th argument) must be NArray");
if (NA_RANK(rblapack_c) != 1)
rb_raise(rb_eArgError, "rank of c (8th argument) must be %d", 1);
ldc = NA_SHAPE0(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_DCOMPLEX)
rblapack_c = na_change_type(rblapack_c, NA_DCOMPLEX);
c = NA_PTR_TYPE(rblapack_c, doublecomplex*);
n = ((int)sqrtf(ldc*8+1.0f)-1)/2;
k = NUM2INT(rblapack_k);
lda = lsame_(&trans,"N") ? MAX(1,n) : MAX(1,k);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (6th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (6th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_a) != lda)
rb_raise(rb_eRuntimeError, "shape 0 of a must be lsame_(&trans,\"N\") ? MAX(1,n) : MAX(1,k)");
if (NA_SHAPE1(rblapack_a) != (lsame_(&trans,"N") ? k : n))
rb_raise(rb_eRuntimeError, "shape 1 of a must be %d", lsame_(&trans,"N") ? k : n);
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = ldc;
rblapack_c_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, doublecomplex*);
MEMCPY(c_out__, c, doublecomplex, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
zhfrk_(&transr, &uplo, &trans, &n, &k, &alpha, a, &lda, &beta, c);
return rblapack_c;
}
void
init_lapack_zhfrk(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zhfrk", rblapack_zhfrk, -1);
}
|