File: zhfrk.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (109 lines) | stat: -rw-r--r-- 6,979 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#include "rb_lapack.h"

extern VOID zhfrk_(char* transr, char* uplo, char* trans, integer* n, integer* k, doublereal* alpha, doublecomplex* a, integer* lda, doublereal* beta, doublecomplex* c);


static VALUE
rblapack_zhfrk(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_transr;
  char transr; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_k;
  integer k; 
  VALUE rblapack_alpha;
  doublereal alpha; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_beta;
  doublereal beta; 
  VALUE rblapack_c;
  doublecomplex *c; 
  VALUE rblapack_c_out__;
  doublecomplex *c_out__;
  integer ldc;

  integer lda;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  c = NumRu::Lapack.zhfrk( transr, uplo, trans, k, alpha, a, beta, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C )\n\n*  Purpose\n*  =======\n*\n*  Level 3 BLAS like routine for C in RFP Format.\n*\n*  ZHFRK performs one of the Hermitian rank--k operations\n*\n*     C := alpha*A*conjg( A' ) + beta*C,\n*\n*  or\n*\n*     C := alpha*conjg( A' )*A + beta*C,\n*\n*  where alpha and beta are real scalars, C is an n--by--n Hermitian\n*  matrix and A is an n--by--k matrix in the first case and a k--by--n\n*  matrix in the second case.\n*\n\n*  Arguments\n*  ==========\n*\n*  TRANSR  (input) CHARACTER*1\n*          = 'N':  The Normal Form of RFP A is stored;\n*          = 'C':  The Conjugate-transpose Form of RFP A is stored.\n*\n*  UPLO    (input) CHARACTER*1\n*           On  entry,   UPLO  specifies  whether  the  upper  or  lower\n*           triangular  part  of the  array  C  is to be  referenced  as\n*           follows:\n*\n*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C\n*                                  is to be referenced.\n*\n*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C\n*                                  is to be referenced.\n*\n*           Unchanged on exit.\n*\n*  TRANS   (input) CHARACTER*1\n*           On entry,  TRANS  specifies the operation to be performed as\n*           follows:\n*\n*              TRANS = 'N' or 'n'   C := alpha*A*conjg( A' ) + beta*C.\n*\n*              TRANS = 'C' or 'c'   C := alpha*conjg( A' )*A + beta*C.\n*\n*           Unchanged on exit.\n*\n*  N       (input) INTEGER\n*           On entry,  N specifies the order of the matrix C.  N must be\n*           at least zero.\n*           Unchanged on exit.\n*\n*  K       (input) INTEGER\n*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number\n*           of  columns   of  the   matrix   A,   and  on   entry   with\n*           TRANS = 'C' or 'c',  K  specifies  the number of rows of the\n*           matrix A.  K must be at least zero.\n*           Unchanged on exit.\n*\n*  ALPHA   (input) DOUBLE PRECISION\n*           On entry, ALPHA specifies the scalar alpha.\n*           Unchanged on exit.\n*\n*  A       (input) COMPLEX*16 array of DIMENSION (LDA,ka)\n*           where KA\n*           is K  when TRANS = 'N' or 'n', and is N otherwise. Before\n*           entry with TRANS = 'N' or 'n', the leading N--by--K part of\n*           the array A must contain the matrix A, otherwise the leading\n*           K--by--N part of the array A must contain the matrix A.\n*           Unchanged on exit.\n*\n*  LDA     (input) INTEGER\n*           On entry, LDA specifies the first dimension of A as declared\n*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'\n*           then  LDA must be at least  max( 1, n ), otherwise  LDA must\n*           be at least  max( 1, k ).\n*           Unchanged on exit.\n*\n*  BETA    (input) DOUBLE PRECISION\n*           On entry, BETA specifies the scalar beta.\n*           Unchanged on exit.\n*\n*  C       (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n*           On entry, the matrix A in RFP Format. RFP Format is\n*           described by TRANSR, UPLO and N. Note that the imaginary\n*           parts of the diagonal elements need not be set, they are\n*           assumed to be zero, and on exit they are set to zero.\n*\n*  Arguments\n*  ==========\n*\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  c = NumRu::Lapack.zhfrk( transr, uplo, trans, k, alpha, a, beta, c, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_transr = argv[0];
  rblapack_uplo = argv[1];
  rblapack_trans = argv[2];
  rblapack_k = argv[3];
  rblapack_alpha = argv[4];
  rblapack_a = argv[5];
  rblapack_beta = argv[6];
  rblapack_c = argv[7];
  if (argc == 8) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  transr = StringValueCStr(rblapack_transr)[0];
  trans = StringValueCStr(rblapack_trans)[0];
  alpha = NUM2DBL(rblapack_alpha);
  beta = NUM2DBL(rblapack_beta);
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (8th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 1)
    rb_raise(rb_eArgError, "rank of c (8th argument) must be %d", 1);
  ldc = NA_SHAPE0(rblapack_c);
  if (NA_TYPE(rblapack_c) != NA_DCOMPLEX)
    rblapack_c = na_change_type(rblapack_c, NA_DCOMPLEX);
  c = NA_PTR_TYPE(rblapack_c, doublecomplex*);
  n = ((int)sqrtf(ldc*8+1.0f)-1)/2;
  k = NUM2INT(rblapack_k);
  lda = lsame_(&trans,"N") ? MAX(1,n) : MAX(1,k);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (6th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (6th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_a) != lda)
    rb_raise(rb_eRuntimeError, "shape 0 of a must be lsame_(&trans,\"N\") ? MAX(1,n) : MAX(1,k)");
  if (NA_SHAPE1(rblapack_a) != (lsame_(&trans,"N") ? k : n))
    rb_raise(rb_eRuntimeError, "shape 1 of a must be %d", lsame_(&trans,"N") ? k : n);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = ldc;
    rblapack_c_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  c_out__ = NA_PTR_TYPE(rblapack_c_out__, doublecomplex*);
  MEMCPY(c_out__, c, doublecomplex, NA_TOTAL(rblapack_c));
  rblapack_c = rblapack_c_out__;
  c = c_out__;

  zhfrk_(&transr, &uplo, &trans, &n, &k, &alpha, a, &lda, &beta, c);

  return rblapack_c;
}

void
init_lapack_zhfrk(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zhfrk", rblapack_zhfrk, -1);
}