1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
#include "rb_lapack.h"
extern VOID zhpgvd_(integer* itype, char* jobz, char* uplo, integer* n, doublecomplex* ap, doublecomplex* bp, doublereal* w, doublecomplex* z, integer* ldz, doublecomplex* work, integer* lwork, doublereal* rwork, integer* lrwork, integer* iwork, integer* liwork, integer* info);
static VALUE
rblapack_zhpgvd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_itype;
integer itype;
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ap;
doublecomplex *ap;
VALUE rblapack_bp;
doublecomplex *bp;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_lrwork;
integer lrwork;
VALUE rblapack_liwork;
integer liwork;
VALUE rblapack_w;
doublereal *w;
VALUE rblapack_z;
doublecomplex *z;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_ap_out__;
doublecomplex *ap_out__;
VALUE rblapack_bp_out__;
doublecomplex *bp_out__;
doublecomplex *work;
doublereal *rwork;
integer ldap;
integer n;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, iwork, info, ap, bp = NumRu::Lapack.zhpgvd( itype, jobz, uplo, ap, bp, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors\n* of a complex generalized Hermitian-definite eigenproblem, of the form\n* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and\n* B are assumed to be Hermitian, stored in packed format, and B is also\n* positive definite.\n* If eigenvectors are desired, it uses a divide and conquer algorithm.\n*\n* The divide and conquer algorithm makes very mild assumptions about\n* floating point arithmetic. It will work on machines with a guard\n* digit in add/subtract, or on those binary machines without guard\n* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n* without guard digits, but we know of none.\n*\n\n* Arguments\n* =========\n*\n* ITYPE (input) INTEGER\n* Specifies the problem type to be solved:\n* = 1: A*x = (lambda)*B*x\n* = 2: A*B*x = (lambda)*x\n* = 3: B*A*x = (lambda)*x\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangles of A and B are stored;\n* = 'L': Lower triangles of A and B are stored.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n* On entry, the upper or lower triangle of the Hermitian matrix\n* A, packed columnwise in a linear array. The j-th column of A\n* is stored in the array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n*\n* On exit, the contents of AP are destroyed.\n*\n* BP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n* On entry, the upper or lower triangle of the Hermitian matrix\n* B, packed columnwise in a linear array. The j-th column of B\n* is stored in the array BP as follows:\n* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;\n* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.\n*\n* On exit, the triangular factor U or L from the Cholesky\n* factorization B = U**H*U or B = L*L**H, in the same storage\n* format as B.\n*\n* W (output) DOUBLE PRECISION array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* Z (output) COMPLEX*16 array, dimension (LDZ, N)\n* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n* eigenvectors. The eigenvectors are normalized as follows:\n* if ITYPE = 1 or 2, Z**H*B*Z = I;\n* if ITYPE = 3, Z**H*inv(B)*Z = I.\n* If JOBZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* WORK (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the required LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of array WORK.\n* If N <= 1, LWORK >= 1.\n* If JOBZ = 'N' and N > 1, LWORK >= N.\n* If JOBZ = 'V' and N > 1, LWORK >= 2*N.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the required sizes of the WORK, RWORK and\n* IWORK arrays, returns these values as the first entries of\n* the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))\n* On exit, if INFO = 0, RWORK(1) returns the required LRWORK.\n*\n* LRWORK (input) INTEGER\n* The dimension of array RWORK.\n* If N <= 1, LRWORK >= 1.\n* If JOBZ = 'N' and N > 1, LRWORK >= N.\n* If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.\n*\n* If LRWORK = -1, then a workspace query is assumed; the\n* routine only calculates the required sizes of the WORK, RWORK\n* and IWORK arrays, returns these values as the first entries\n* of the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n* On exit, if INFO = 0, IWORK(1) returns the required LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of array IWORK.\n* If JOBZ = 'N' or N <= 1, LIWORK >= 1.\n* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.\n*\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates the required sizes of the WORK, RWORK\n* and IWORK arrays, returns these values as the first entries\n* of the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: ZPPTRF or ZHPEVD returned an error code:\n* <= N: if INFO = i, ZHPEVD failed to converge;\n* i off-diagonal elements of an intermediate\n* tridiagonal form did not convergeto zero;\n* > N: if INFO = N + i, for 1 <= i <= n, then the leading\n* minor of order i of B is not positive definite.\n* The factorization of B could not be completed and\n* no eigenvalues or eigenvectors were computed.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n*\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL LQUERY, UPPER, WANTZ\n CHARACTER TRANS\n INTEGER J, LIWMIN, LRWMIN, LWMIN, NEIG\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL XERBLA, ZHPEVD, ZHPGST, ZPPTRF, ZTPMV, ZTPSV\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC DBLE, MAX\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, iwork, info, ap, bp = NumRu::Lapack.zhpgvd( itype, jobz, uplo, ap, bp, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 8)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_itype = argv[0];
rblapack_jobz = argv[1];
rblapack_uplo = argv[2];
rblapack_ap = argv[3];
rblapack_bp = argv[4];
if (argc == 8) {
rblapack_lwork = argv[5];
rblapack_lrwork = argv[6];
rblapack_liwork = argv[7];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
rblapack_lrwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lrwork")));
rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
} else {
rblapack_lwork = Qnil;
rblapack_lrwork = Qnil;
rblapack_liwork = Qnil;
}
itype = NUM2INT(rblapack_itype);
uplo = StringValueCStr(rblapack_uplo)[0];
jobz = StringValueCStr(rblapack_jobz)[0];
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (4th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (4th argument) must be %d", 1);
ldap = NA_SHAPE0(rblapack_ap);
if (NA_TYPE(rblapack_ap) != NA_DCOMPLEX)
rblapack_ap = na_change_type(rblapack_ap, NA_DCOMPLEX);
ap = NA_PTR_TYPE(rblapack_ap, doublecomplex*);
n = ((int)sqrtf(ldap*8+1.0f)-1)/2;
if (!NA_IsNArray(rblapack_bp))
rb_raise(rb_eArgError, "bp (5th argument) must be NArray");
if (NA_RANK(rblapack_bp) != 1)
rb_raise(rb_eArgError, "rank of bp (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_bp) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of bp must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_bp) != NA_DCOMPLEX)
rblapack_bp = na_change_type(rblapack_bp, NA_DCOMPLEX);
bp = NA_PTR_TYPE(rblapack_bp, doublecomplex*);
if (rblapack_lrwork == Qnil)
lrwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n : lsame_(&jobz,"V") ? 1+5*n+2*n*n : 0;
else {
lrwork = NUM2INT(rblapack_lrwork);
}
ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
if (rblapack_lwork == Qnil)
lwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n : lsame_(&jobz,"V") ? 2*n : 0;
else {
lwork = NUM2INT(rblapack_lwork);
}
if (rblapack_liwork == Qnil)
liwork = (lsame_(&jobz,"N")||n<=1) ? 1 : lsame_(&jobz,"V") ? 3+5*n : 0;
else {
liwork = NUM2INT(rblapack_liwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,liwork);
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[1];
shape[0] = ldap;
rblapack_ap_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, doublecomplex*);
MEMCPY(ap_out__, ap, doublecomplex, NA_TOTAL(rblapack_ap));
rblapack_ap = rblapack_ap_out__;
ap = ap_out__;
{
na_shape_t shape[1];
shape[0] = n*(n+1)/2;
rblapack_bp_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
bp_out__ = NA_PTR_TYPE(rblapack_bp_out__, doublecomplex*);
MEMCPY(bp_out__, bp, doublecomplex, NA_TOTAL(rblapack_bp));
rblapack_bp = rblapack_bp_out__;
bp = bp_out__;
work = ALLOC_N(doublecomplex, (MAX(1,lwork)));
rwork = ALLOC_N(doublereal, (MAX(1,lrwork)));
zhpgvd_(&itype, &jobz, &uplo, &n, ap, bp, w, z, &ldz, work, &lwork, rwork, &lrwork, iwork, &liwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(6, rblapack_w, rblapack_z, rblapack_iwork, rblapack_info, rblapack_ap, rblapack_bp);
}
void
init_lapack_zhpgvd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zhpgvd", rblapack_zhpgvd, -1);
}
|