File: zhpgvx.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (170 lines) | stat: -rw-r--r-- 12,831 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include "rb_lapack.h"

extern VOID zhpgvx_(integer* itype, char* jobz, char* range, char* uplo, integer* n, doublecomplex* ap, doublecomplex* bp, doublereal* vl, doublereal* vu, integer* il, integer* iu, doublereal* abstol, integer* m, doublereal* w, doublecomplex* z, integer* ldz, doublecomplex* work, doublereal* rwork, integer* iwork, integer* ifail, integer* info);


static VALUE
rblapack_zhpgvx(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_itype;
  integer itype; 
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_range;
  char range; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_ap;
  doublecomplex *ap; 
  VALUE rblapack_bp;
  doublecomplex *bp; 
  VALUE rblapack_vl;
  doublereal vl; 
  VALUE rblapack_vu;
  doublereal vu; 
  VALUE rblapack_il;
  integer il; 
  VALUE rblapack_iu;
  integer iu; 
  VALUE rblapack_abstol;
  doublereal abstol; 
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_w;
  doublereal *w; 
  VALUE rblapack_z;
  doublecomplex *z; 
  VALUE rblapack_ifail;
  integer *ifail; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ap_out__;
  doublecomplex *ap_out__;
  VALUE rblapack_bp_out__;
  doublecomplex *bp_out__;
  doublecomplex *work;
  doublereal *rwork;
  integer *iwork;

  integer ldap;
  integer n;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  m, w, z, ifail, info, ap, bp = NumRu::Lapack.zhpgvx( itype, jobz, range, uplo, ap, bp, vl, vu, il, iu, abstol, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZHPGVX computes selected eigenvalues and, optionally, eigenvectors\n*  of a complex generalized Hermitian-definite eigenproblem, of the form\n*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and\n*  B are assumed to be Hermitian, stored in packed format, and B is also\n*  positive definite.  Eigenvalues and eigenvectors can be selected by\n*  specifying either a range of values or a range of indices for the\n*  desired eigenvalues.\n*\n\n*  Arguments\n*  =========\n*\n*  ITYPE   (input) INTEGER\n*          Specifies the problem type to be solved:\n*          = 1:  A*x = (lambda)*B*x\n*          = 2:  A*B*x = (lambda)*x\n*          = 3:  B*A*x = (lambda)*x\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  RANGE   (input) CHARACTER*1\n*          = 'A': all eigenvalues will be found;\n*          = 'V': all eigenvalues in the half-open interval (VL,VU]\n*                 will be found;\n*          = 'I': the IL-th through IU-th eigenvalues will be found.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangles of A and B are stored;\n*          = 'L':  Lower triangles of A and B are stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A and B.  N >= 0.\n*\n*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n*          On entry, the upper or lower triangle of the Hermitian matrix\n*          A, packed columnwise in a linear array.  The j-th column of A\n*          is stored in the array AP as follows:\n*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n*\n*          On exit, the contents of AP are destroyed.\n*\n*  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n*          On entry, the upper or lower triangle of the Hermitian matrix\n*          B, packed columnwise in a linear array.  The j-th column of B\n*          is stored in the array BP as follows:\n*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;\n*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.\n*\n*          On exit, the triangular factor U or L from the Cholesky\n*          factorization B = U**H*U or B = L*L**H, in the same storage\n*          format as B.\n*\n*  VL      (input) DOUBLE PRECISION\n*  VU      (input) DOUBLE PRECISION\n*          If RANGE='V', the lower and upper bounds of the interval to\n*          be searched for eigenvalues. VL < VU.\n*          Not referenced if RANGE = 'A' or 'I'.\n*\n*  IL      (input) INTEGER\n*  IU      (input) INTEGER\n*          If RANGE='I', the indices (in ascending order) of the\n*          smallest and largest eigenvalues to be returned.\n*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n*          Not referenced if RANGE = 'A' or 'V'.\n*\n*  ABSTOL  (input) DOUBLE PRECISION\n*          The absolute error tolerance for the eigenvalues.\n*          An approximate eigenvalue is accepted as converged\n*          when it is determined to lie in an interval [a,b]\n*          of width less than or equal to\n*\n*                  ABSTOL + EPS *   max( |a|,|b| ) ,\n*\n*          where EPS is the machine precision.  If ABSTOL is less than\n*          or equal to zero, then  EPS*|T|  will be used in its place,\n*          where |T| is the 1-norm of the tridiagonal matrix obtained\n*          by reducing AP to tridiagonal form.\n*\n*          Eigenvalues will be computed most accurately when ABSTOL is\n*          set to twice the underflow threshold 2*DLAMCH('S'), not zero.\n*          If this routine returns with INFO>0, indicating that some\n*          eigenvectors did not converge, try setting ABSTOL to\n*          2*DLAMCH('S').\n*\n*  M       (output) INTEGER\n*          The total number of eigenvalues found.  0 <= M <= N.\n*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n*\n*  W       (output) DOUBLE PRECISION array, dimension (N)\n*          On normal exit, the first M elements contain the selected\n*          eigenvalues in ascending order.\n*\n*  Z       (output) COMPLEX*16 array, dimension (LDZ, N)\n*          If JOBZ = 'N', then Z is not referenced.\n*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z\n*          contain the orthonormal eigenvectors of the matrix A\n*          corresponding to the selected eigenvalues, with the i-th\n*          column of Z holding the eigenvector associated with W(i).\n*          The eigenvectors are normalized as follows:\n*          if ITYPE = 1 or 2, Z**H*B*Z = I;\n*          if ITYPE = 3, Z**H*inv(B)*Z = I.\n*\n*          If an eigenvector fails to converge, then that column of Z\n*          contains the latest approximation to the eigenvector, and the\n*          index of the eigenvector is returned in IFAIL.\n*          Note: the user must ensure that at least max(1,M) columns are\n*          supplied in the array Z; if RANGE = 'V', the exact value of M\n*          is not known in advance and an upper bound must be used.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z.  LDZ >= 1, and if\n*          JOBZ = 'V', LDZ >= max(1,N).\n*\n*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)\n*\n*  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)\n*\n*  IWORK   (workspace) INTEGER array, dimension (5*N)\n*\n*  IFAIL   (output) INTEGER array, dimension (N)\n*          If JOBZ = 'V', then if INFO = 0, the first M elements of\n*          IFAIL are zero.  If INFO > 0, then IFAIL contains the\n*          indices of the eigenvectors that failed to converge.\n*          If JOBZ = 'N', then IFAIL is not referenced.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  ZPPTRF or ZHPEVX returned an error code:\n*             <= N:  if INFO = i, ZHPEVX failed to converge;\n*                    i eigenvectors failed to converge.  Their indices\n*                    are stored in array IFAIL.\n*             > N:   if INFO = N + i, for 1 <= i <= n, then the leading\n*                    minor of order i of B is not positive definite.\n*                    The factorization of B could not be completed and\n*                    no eigenvalues or eigenvectors were computed.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n*\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ\n      CHARACTER          TRANS\n      INTEGER            J\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      EXTERNAL           LSAME\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           XERBLA, ZHPEVX, ZHPGST, ZPPTRF, ZTPMV, ZTPSV\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          MIN\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  m, w, z, ifail, info, ap, bp = NumRu::Lapack.zhpgvx( itype, jobz, range, uplo, ap, bp, vl, vu, il, iu, abstol, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 11 && argc != 11)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 11)", argc);
  rblapack_itype = argv[0];
  rblapack_jobz = argv[1];
  rblapack_range = argv[2];
  rblapack_uplo = argv[3];
  rblapack_ap = argv[4];
  rblapack_bp = argv[5];
  rblapack_vl = argv[6];
  rblapack_vu = argv[7];
  rblapack_il = argv[8];
  rblapack_iu = argv[9];
  rblapack_abstol = argv[10];
  if (argc == 11) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  itype = NUM2INT(rblapack_itype);
  range = StringValueCStr(rblapack_range)[0];
  if (!NA_IsNArray(rblapack_ap))
    rb_raise(rb_eArgError, "ap (5th argument) must be NArray");
  if (NA_RANK(rblapack_ap) != 1)
    rb_raise(rb_eArgError, "rank of ap (5th argument) must be %d", 1);
  ldap = NA_SHAPE0(rblapack_ap);
  if (NA_TYPE(rblapack_ap) != NA_DCOMPLEX)
    rblapack_ap = na_change_type(rblapack_ap, NA_DCOMPLEX);
  ap = NA_PTR_TYPE(rblapack_ap, doublecomplex*);
  vl = NUM2DBL(rblapack_vl);
  il = NUM2INT(rblapack_il);
  abstol = NUM2DBL(rblapack_abstol);
  n = ((int)sqrtf(ldap*8+1.0f)-1)/2;
  jobz = StringValueCStr(rblapack_jobz)[0];
  if (!NA_IsNArray(rblapack_bp))
    rb_raise(rb_eArgError, "bp (6th argument) must be NArray");
  if (NA_RANK(rblapack_bp) != 1)
    rb_raise(rb_eArgError, "rank of bp (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_bp) != (n*(n+1)/2))
    rb_raise(rb_eRuntimeError, "shape 0 of bp must be %d", n*(n+1)/2);
  if (NA_TYPE(rblapack_bp) != NA_DCOMPLEX)
    rblapack_bp = na_change_type(rblapack_bp, NA_DCOMPLEX);
  bp = NA_PTR_TYPE(rblapack_bp, doublecomplex*);
  iu = NUM2INT(rblapack_iu);
  uplo = StringValueCStr(rblapack_uplo)[0];
  ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
  vu = NUM2DBL(rblapack_vu);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = lsame_(&jobz,"N") ? 0 : ldz;
    shape[1] = lsame_(&jobz,"N") ? 0 : n;
    rblapack_z = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  z = NA_PTR_TYPE(rblapack_z, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_ifail = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  ifail = NA_PTR_TYPE(rblapack_ifail, integer*);
  {
    na_shape_t shape[1];
    shape[0] = ldap;
    rblapack_ap_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, doublecomplex*);
  MEMCPY(ap_out__, ap, doublecomplex, NA_TOTAL(rblapack_ap));
  rblapack_ap = rblapack_ap_out__;
  ap = ap_out__;
  {
    na_shape_t shape[1];
    shape[0] = n*(n+1)/2;
    rblapack_bp_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  bp_out__ = NA_PTR_TYPE(rblapack_bp_out__, doublecomplex*);
  MEMCPY(bp_out__, bp, doublecomplex, NA_TOTAL(rblapack_bp));
  rblapack_bp = rblapack_bp_out__;
  bp = bp_out__;
  work = ALLOC_N(doublecomplex, (2*n));
  rwork = ALLOC_N(doublereal, (7*n));
  iwork = ALLOC_N(integer, (5*n));

  zhpgvx_(&itype, &jobz, &range, &uplo, &n, ap, bp, &vl, &vu, &il, &iu, &abstol, &m, w, z, &ldz, work, rwork, iwork, ifail, &info);

  free(work);
  free(rwork);
  free(iwork);
  rblapack_m = INT2NUM(m);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(7, rblapack_m, rblapack_w, rblapack_z, rblapack_ifail, rblapack_info, rblapack_ap, rblapack_bp);
}

void
init_lapack_zhpgvx(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zhpgvx", rblapack_zhpgvx, -1);
}