File: zlagtm.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (132 lines) | stat: -rw-r--r-- 6,783 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "rb_lapack.h"

extern VOID zlagtm_(char* trans, integer* n, integer* nrhs, doublereal* alpha, doublecomplex* dl, doublecomplex* d, doublecomplex* du, doublecomplex* x, integer* ldx, doublereal* beta, doublecomplex* b, integer* ldb);


static VALUE
rblapack_zlagtm(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_alpha;
  doublereal alpha; 
  VALUE rblapack_dl;
  doublecomplex *dl; 
  VALUE rblapack_d;
  doublecomplex *d; 
  VALUE rblapack_du;
  doublecomplex *du; 
  VALUE rblapack_x;
  doublecomplex *x; 
  VALUE rblapack_beta;
  doublereal beta; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;

  integer n;
  integer ldx;
  integer nrhs;
  integer ldb;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  b = NumRu::Lapack.zlagtm( trans, alpha, dl, d, du, x, beta, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB )\n\n*  Purpose\n*  =======\n*\n*  ZLAGTM performs a matrix-vector product of the form\n*\n*     B := alpha * A * X + beta * B\n*\n*  where A is a tridiagonal matrix of order N, B and X are N by NRHS\n*  matrices, and alpha and beta are real scalars, each of which may be\n*  0., 1., or -1.\n*\n\n*  Arguments\n*  =========\n*\n*  TRANS   (input) CHARACTER*1\n*          Specifies the operation applied to A.\n*          = 'N':  No transpose, B := alpha * A * X + beta * B\n*          = 'T':  Transpose,    B := alpha * A**T * X + beta * B\n*          = 'C':  Conjugate transpose, B := alpha * A**H * X + beta * B\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrices X and B.\n*\n*  ALPHA   (input) DOUBLE PRECISION\n*          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise,\n*          it is assumed to be 0.\n*\n*  DL      (input) COMPLEX*16 array, dimension (N-1)\n*          The (n-1) sub-diagonal elements of T.\n*\n*  D       (input) COMPLEX*16 array, dimension (N)\n*          The diagonal elements of T.\n*\n*  DU      (input) COMPLEX*16 array, dimension (N-1)\n*          The (n-1) super-diagonal elements of T.\n*\n*  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)\n*          The N by NRHS matrix X.\n*  LDX     (input) INTEGER\n*          The leading dimension of the array X.  LDX >= max(N,1).\n*\n*  BETA    (input) DOUBLE PRECISION\n*          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,\n*          it is assumed to be 1.\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n*          On entry, the N by NRHS matrix B.\n*          On exit, B is overwritten by the matrix expression\n*          B := alpha * A * X + beta * B.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(N,1).\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  b = NumRu::Lapack.zlagtm( trans, alpha, dl, d, du, x, beta, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_trans = argv[0];
  rblapack_alpha = argv[1];
  rblapack_dl = argv[2];
  rblapack_d = argv[3];
  rblapack_du = argv[4];
  rblapack_x = argv[5];
  rblapack_beta = argv[6];
  rblapack_b = argv[7];
  if (argc == 8) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  trans = StringValueCStr(rblapack_trans)[0];
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (4th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (4th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_DCOMPLEX)
    rblapack_d = na_change_type(rblapack_d, NA_DCOMPLEX);
  d = NA_PTR_TYPE(rblapack_d, doublecomplex*);
  if (!NA_IsNArray(rblapack_x))
    rb_raise(rb_eArgError, "x (6th argument) must be NArray");
  if (NA_RANK(rblapack_x) != 2)
    rb_raise(rb_eArgError, "rank of x (6th argument) must be %d", 2);
  ldx = NA_SHAPE0(rblapack_x);
  nrhs = NA_SHAPE1(rblapack_x);
  if (NA_TYPE(rblapack_x) != NA_DCOMPLEX)
    rblapack_x = na_change_type(rblapack_x, NA_DCOMPLEX);
  x = NA_PTR_TYPE(rblapack_x, doublecomplex*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (8th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (8th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != nrhs)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of x");
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  alpha = NUM2DBL(rblapack_alpha);
  if (!NA_IsNArray(rblapack_du))
    rb_raise(rb_eArgError, "du (5th argument) must be NArray");
  if (NA_RANK(rblapack_du) != 1)
    rb_raise(rb_eArgError, "rank of du (5th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_du) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of du must be %d", n-1);
  if (NA_TYPE(rblapack_du) != NA_DCOMPLEX)
    rblapack_du = na_change_type(rblapack_du, NA_DCOMPLEX);
  du = NA_PTR_TYPE(rblapack_du, doublecomplex*);
  if (!NA_IsNArray(rblapack_dl))
    rb_raise(rb_eArgError, "dl (3th argument) must be NArray");
  if (NA_RANK(rblapack_dl) != 1)
    rb_raise(rb_eArgError, "rank of dl (3th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_dl) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of dl must be %d", n-1);
  if (NA_TYPE(rblapack_dl) != NA_DCOMPLEX)
    rblapack_dl = na_change_type(rblapack_dl, NA_DCOMPLEX);
  dl = NA_PTR_TYPE(rblapack_dl, doublecomplex*);
  beta = NUM2DBL(rblapack_beta);
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  zlagtm_(&trans, &n, &nrhs, &alpha, dl, d, du, x, &ldx, &beta, b, &ldb);

  return rblapack_b;
}

void
init_lapack_zlagtm(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zlagtm", rblapack_zlagtm, -1);
}