1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
#include "rb_lapack.h"
extern VOID zlahef_(char* uplo, integer* n, integer* nb, integer* kb, doublecomplex* a, integer* lda, integer* ipiv, doublecomplex* w, integer* ldw, integer* info);
static VALUE
rblapack_zlahef(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_nb;
integer nb;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_kb;
integer kb;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
doublecomplex *a_out__;
doublecomplex *w;
integer lda;
integer n;
integer ldw;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n kb, ipiv, info, a = NumRu::Lapack.zlahef( uplo, nb, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )\n\n* Purpose\n* =======\n*\n* ZLAHEF computes a partial factorization of a complex Hermitian\n* matrix A using the Bunch-Kaufman diagonal pivoting method. The\n* partial factorization has the form:\n*\n* A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:\n* ( 0 U22 ) ( 0 D ) ( U12' U22' )\n*\n* A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L'\n* ( L21 I ) ( 0 A22 ) ( 0 I )\n*\n* where the order of D is at most NB. The actual order is returned in\n* the argument KB, and is either NB or NB-1, or N if N <= NB.\n* Note that U' denotes the conjugate transpose of U.\n*\n* ZLAHEF is an auxiliary routine called by ZHETRF. It uses blocked code\n* (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or\n* A22 (if UPLO = 'L').\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* Specifies whether the upper or lower triangular part of the\n* Hermitian matrix A is stored:\n* = 'U': Upper triangular\n* = 'L': Lower triangular\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* NB (input) INTEGER\n* The maximum number of columns of the matrix A that should be\n* factored. NB should be at least 2 to allow for 2-by-2 pivot\n* blocks.\n*\n* KB (output) INTEGER\n* The number of columns of A that were actually factored.\n* KB is either NB-1 or NB, or N if N <= NB.\n*\n* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n* On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n* n-by-n upper triangular part of A contains the upper\n* triangular part of the matrix A, and the strictly lower\n* triangular part of A is not referenced. If UPLO = 'L', the\n* leading n-by-n lower triangular part of A contains the lower\n* triangular part of the matrix A, and the strictly upper\n* triangular part of A is not referenced.\n* On exit, A contains details of the partial factorization.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* IPIV (output) INTEGER array, dimension (N)\n* Details of the interchanges and the block structure of D.\n* If UPLO = 'U', only the last KB elements of IPIV are set;\n* if UPLO = 'L', only the first KB elements are set.\n*\n* If IPIV(k) > 0, then rows and columns k and IPIV(k) were\n* interchanged and D(k,k) is a 1-by-1 diagonal block.\n* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and\n* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)\n* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =\n* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were\n* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.\n*\n* W (workspace) COMPLEX*16 array, dimension (LDW,NB)\n*\n* LDW (input) INTEGER\n* The leading dimension of the array W. LDW >= max(1,N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* > 0: if INFO = k, D(k,k) is exactly zero. The factorization\n* has been completed, but the block diagonal matrix D is\n* exactly singular.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n kb, ipiv, info, a = NumRu::Lapack.zlahef( uplo, nb, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 3)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_uplo = argv[0];
rblapack_nb = argv[1];
rblapack_a = argv[2];
if (argc == 3) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
nb = NUM2INT(rblapack_nb);
ldw = MAX(1,n);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_ipiv = na_make_object(NA_LINT, 1, shape, cNArray);
}
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
w = ALLOC_N(doublecomplex, (ldw)*(MAX(n,nb)));
zlahef_(&uplo, &n, &nb, &kb, a, &lda, ipiv, w, &ldw, &info);
free(w);
rblapack_kb = INT2NUM(kb);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_kb, rblapack_ipiv, rblapack_info, rblapack_a);
}
void
init_lapack_zlahef(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zlahef", rblapack_zlahef, -1);
}
|