File: zlalsa.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (270 lines) | stat: -rw-r--r-- 17,049 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#include "rb_lapack.h"

extern VOID zlalsa_(integer* icompq, integer* smlsiz, integer* n, integer* nrhs, doublecomplex* b, integer* ldb, doublecomplex* bx, integer* ldbx, doublereal* u, integer* ldu, doublereal* vt, integer* k, doublereal* difl, doublereal* difr, doublereal* z, doublereal* poles, integer* givptr, integer* givcol, integer* ldgcol, integer* perm, doublereal* givnum, doublereal* c, doublereal* s, doublereal* rwork, integer* iwork, integer* info);


static VALUE
rblapack_zlalsa(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_icompq;
  integer icompq; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_u;
  doublereal *u; 
  VALUE rblapack_vt;
  doublereal *vt; 
  VALUE rblapack_k;
  integer *k; 
  VALUE rblapack_difl;
  doublereal *difl; 
  VALUE rblapack_difr;
  doublereal *difr; 
  VALUE rblapack_z;
  doublereal *z; 
  VALUE rblapack_poles;
  doublereal *poles; 
  VALUE rblapack_givptr;
  integer *givptr; 
  VALUE rblapack_givcol;
  integer *givcol; 
  VALUE rblapack_perm;
  integer *perm; 
  VALUE rblapack_givnum;
  doublereal *givnum; 
  VALUE rblapack_c;
  doublereal *c; 
  VALUE rblapack_s;
  doublereal *s; 
  VALUE rblapack_bx;
  doublecomplex *bx; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;
  doublereal *rwork;
  integer *iwork;

  integer ldb;
  integer nrhs;
  integer ldu;
  integer smlsiz;
  integer n;
  integer nlvl;
  integer ldgcol;
  integer ldbx;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  bx, info, b = NumRu::Lapack.zlalsa( icompq, b, u, vt, k, difl, difr, z, poles, givptr, givcol, perm, givnum, c, s, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK, IWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZLALSA is an itermediate step in solving the least squares problem\n*  by computing the SVD of the coefficient matrix in compact form (The\n*  singular vectors are computed as products of simple orthorgonal\n*  matrices.).\n*\n*  If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector\n*  matrix of an upper bidiagonal matrix to the right hand side; and if\n*  ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the\n*  right hand side. The singular vector matrices were generated in\n*  compact form by ZLALSA.\n*\n\n*  Arguments\n*  =========\n*\n*  ICOMPQ (input) INTEGER\n*         Specifies whether the left or the right singular vector\n*         matrix is involved.\n*         = 0: Left singular vector matrix\n*         = 1: Right singular vector matrix\n*\n*  SMLSIZ (input) INTEGER\n*         The maximum size of the subproblems at the bottom of the\n*         computation tree.\n*\n*  N      (input) INTEGER\n*         The row and column dimensions of the upper bidiagonal matrix.\n*\n*  NRHS   (input) INTEGER\n*         The number of columns of B and BX. NRHS must be at least 1.\n*\n*  B      (input/output) COMPLEX*16 array, dimension ( LDB, NRHS )\n*         On input, B contains the right hand sides of the least\n*         squares problem in rows 1 through M.\n*         On output, B contains the solution X in rows 1 through N.\n*\n*  LDB    (input) INTEGER\n*         The leading dimension of B in the calling subprogram.\n*         LDB must be at least max(1,MAX( M, N ) ).\n*\n*  BX     (output) COMPLEX*16 array, dimension ( LDBX, NRHS )\n*         On exit, the result of applying the left or right singular\n*         vector matrix to B.\n*\n*  LDBX   (input) INTEGER\n*         The leading dimension of BX.\n*\n*  U      (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).\n*         On entry, U contains the left singular vector matrices of all\n*         subproblems at the bottom level.\n*\n*  LDU    (input) INTEGER, LDU = > N.\n*         The leading dimension of arrays U, VT, DIFL, DIFR,\n*         POLES, GIVNUM, and Z.\n*\n*  VT     (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).\n*         On entry, VT' contains the right singular vector matrices of\n*         all subproblems at the bottom level.\n*\n*  K      (input) INTEGER array, dimension ( N ).\n*\n*  DIFL   (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).\n*         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.\n*\n*  DIFR   (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).\n*         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record\n*         distances between singular values on the I-th level and\n*         singular values on the (I -1)-th level, and DIFR(*, 2 * I)\n*         record the normalizing factors of the right singular vectors\n*         matrices of subproblems on I-th level.\n*\n*  Z      (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).\n*         On entry, Z(1, I) contains the components of the deflation-\n*         adjusted updating row vector for subproblems on the I-th\n*         level.\n*\n*  POLES  (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).\n*         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old\n*         singular values involved in the secular equations on the I-th\n*         level.\n*\n*  GIVPTR (input) INTEGER array, dimension ( N ).\n*         On entry, GIVPTR( I ) records the number of Givens\n*         rotations performed on the I-th problem on the computation\n*         tree.\n*\n*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).\n*         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the\n*         locations of Givens rotations performed on the I-th level on\n*         the computation tree.\n*\n*  LDGCOL (input) INTEGER, LDGCOL = > N.\n*         The leading dimension of arrays GIVCOL and PERM.\n*\n*  PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ).\n*         On entry, PERM(*, I) records permutations done on the I-th\n*         level of the computation tree.\n*\n*  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).\n*         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-\n*         values of Givens rotations performed on the I-th level on the\n*         computation tree.\n*\n*  C      (input) DOUBLE PRECISION array, dimension ( N ).\n*         On entry, if the I-th subproblem is not square,\n*         C( I ) contains the C-value of a Givens rotation related to\n*         the right null space of the I-th subproblem.\n*\n*  S      (input) DOUBLE PRECISION array, dimension ( N ).\n*         On entry, if the I-th subproblem is not square,\n*         S( I ) contains the S-value of a Givens rotation related to\n*         the right null space of the I-th subproblem.\n*\n*  RWORK  (workspace) DOUBLE PRECISION array, dimension at least\n*         MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ).\n*\n*  IWORK  (workspace) INTEGER array.\n*         The dimension must be at least 3 * N\n*\n*  INFO   (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Ming Gu and Ren-Cang Li, Computer Science Division, University of\n*       California at Berkeley, USA\n*     Osni Marques, LBNL/NERSC, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  bx, info, b = NumRu::Lapack.zlalsa( icompq, b, u, vt, k, difl, difr, z, poles, givptr, givcol, perm, givnum, c, s, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 15 && argc != 15)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 15)", argc);
  rblapack_icompq = argv[0];
  rblapack_b = argv[1];
  rblapack_u = argv[2];
  rblapack_vt = argv[3];
  rblapack_k = argv[4];
  rblapack_difl = argv[5];
  rblapack_difr = argv[6];
  rblapack_z = argv[7];
  rblapack_poles = argv[8];
  rblapack_givptr = argv[9];
  rblapack_givcol = argv[10];
  rblapack_perm = argv[11];
  rblapack_givnum = argv[12];
  rblapack_c = argv[13];
  rblapack_s = argv[14];
  if (argc == 15) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  icompq = NUM2INT(rblapack_icompq);
  if (!NA_IsNArray(rblapack_u))
    rb_raise(rb_eArgError, "u (3th argument) must be NArray");
  if (NA_RANK(rblapack_u) != 2)
    rb_raise(rb_eArgError, "rank of u (3th argument) must be %d", 2);
  ldu = NA_SHAPE0(rblapack_u);
  smlsiz = NA_SHAPE1(rblapack_u);
  if (NA_TYPE(rblapack_u) != NA_DFLOAT)
    rblapack_u = na_change_type(rblapack_u, NA_DFLOAT);
  u = NA_PTR_TYPE(rblapack_u, doublereal*);
  if (!NA_IsNArray(rblapack_k))
    rb_raise(rb_eArgError, "k (5th argument) must be NArray");
  if (NA_RANK(rblapack_k) != 1)
    rb_raise(rb_eArgError, "rank of k (5th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_k);
  if (NA_TYPE(rblapack_k) != NA_LINT)
    rblapack_k = na_change_type(rblapack_k, NA_LINT);
  k = NA_PTR_TYPE(rblapack_k, integer*);
  if (!NA_IsNArray(rblapack_givptr))
    rb_raise(rb_eArgError, "givptr (10th argument) must be NArray");
  if (NA_RANK(rblapack_givptr) != 1)
    rb_raise(rb_eArgError, "rank of givptr (10th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_givptr) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of givptr must be the same as shape 0 of k");
  if (NA_TYPE(rblapack_givptr) != NA_LINT)
    rblapack_givptr = na_change_type(rblapack_givptr, NA_LINT);
  givptr = NA_PTR_TYPE(rblapack_givptr, integer*);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (14th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 1)
    rb_raise(rb_eArgError, "rank of c (14th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_c) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of c must be the same as shape 0 of k");
  if (NA_TYPE(rblapack_c) != NA_DFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_DFLOAT);
  c = NA_PTR_TYPE(rblapack_c, doublereal*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (2th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (2th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  if (!NA_IsNArray(rblapack_s))
    rb_raise(rb_eArgError, "s (15th argument) must be NArray");
  if (NA_RANK(rblapack_s) != 1)
    rb_raise(rb_eArgError, "rank of s (15th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_s) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of s must be the same as shape 0 of k");
  if (NA_TYPE(rblapack_s) != NA_DFLOAT)
    rblapack_s = na_change_type(rblapack_s, NA_DFLOAT);
  s = NA_PTR_TYPE(rblapack_s, doublereal*);
  nlvl = (int)(1.0/log(2.0)*log((double)n/(smlsiz+1))) + 1;
  if (!NA_IsNArray(rblapack_vt))
    rb_raise(rb_eArgError, "vt (4th argument) must be NArray");
  if (NA_RANK(rblapack_vt) != 2)
    rb_raise(rb_eArgError, "rank of vt (4th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_vt) != ldu)
    rb_raise(rb_eRuntimeError, "shape 0 of vt must be the same as shape 0 of u");
  if (NA_SHAPE1(rblapack_vt) != (smlsiz+1))
    rb_raise(rb_eRuntimeError, "shape 1 of vt must be %d", smlsiz+1);
  if (NA_TYPE(rblapack_vt) != NA_DFLOAT)
    rblapack_vt = na_change_type(rblapack_vt, NA_DFLOAT);
  vt = NA_PTR_TYPE(rblapack_vt, doublereal*);
  if (!NA_IsNArray(rblapack_difr))
    rb_raise(rb_eArgError, "difr (7th argument) must be NArray");
  if (NA_RANK(rblapack_difr) != 2)
    rb_raise(rb_eArgError, "rank of difr (7th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_difr) != ldu)
    rb_raise(rb_eRuntimeError, "shape 0 of difr must be the same as shape 0 of u");
  if (NA_SHAPE1(rblapack_difr) != (2 * nlvl))
    rb_raise(rb_eRuntimeError, "shape 1 of difr must be %d", 2 * nlvl);
  if (NA_TYPE(rblapack_difr) != NA_DFLOAT)
    rblapack_difr = na_change_type(rblapack_difr, NA_DFLOAT);
  difr = NA_PTR_TYPE(rblapack_difr, doublereal*);
  if (!NA_IsNArray(rblapack_poles))
    rb_raise(rb_eArgError, "poles (9th argument) must be NArray");
  if (NA_RANK(rblapack_poles) != 2)
    rb_raise(rb_eArgError, "rank of poles (9th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_poles) != ldu)
    rb_raise(rb_eRuntimeError, "shape 0 of poles must be the same as shape 0 of u");
  if (NA_SHAPE1(rblapack_poles) != (2 * nlvl))
    rb_raise(rb_eRuntimeError, "shape 1 of poles must be %d", 2 * nlvl);
  if (NA_TYPE(rblapack_poles) != NA_DFLOAT)
    rblapack_poles = na_change_type(rblapack_poles, NA_DFLOAT);
  poles = NA_PTR_TYPE(rblapack_poles, doublereal*);
  if (!NA_IsNArray(rblapack_perm))
    rb_raise(rb_eArgError, "perm (12th argument) must be NArray");
  if (NA_RANK(rblapack_perm) != 2)
    rb_raise(rb_eArgError, "rank of perm (12th argument) must be %d", 2);
  ldgcol = NA_SHAPE0(rblapack_perm);
  if (NA_SHAPE1(rblapack_perm) != nlvl)
    rb_raise(rb_eRuntimeError, "shape 1 of perm must be (int)(1.0/log(2.0)*log((double)n/(smlsiz+1))) + 1");
  if (NA_TYPE(rblapack_perm) != NA_LINT)
    rblapack_perm = na_change_type(rblapack_perm, NA_LINT);
  perm = NA_PTR_TYPE(rblapack_perm, integer*);
  ldbx = n;
  if (!NA_IsNArray(rblapack_difl))
    rb_raise(rb_eArgError, "difl (6th argument) must be NArray");
  if (NA_RANK(rblapack_difl) != 2)
    rb_raise(rb_eArgError, "rank of difl (6th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_difl) != ldu)
    rb_raise(rb_eRuntimeError, "shape 0 of difl must be the same as shape 0 of u");
  if (NA_SHAPE1(rblapack_difl) != nlvl)
    rb_raise(rb_eRuntimeError, "shape 1 of difl must be (int)(1.0/log(2.0)*log((double)n/(smlsiz+1))) + 1");
  if (NA_TYPE(rblapack_difl) != NA_DFLOAT)
    rblapack_difl = na_change_type(rblapack_difl, NA_DFLOAT);
  difl = NA_PTR_TYPE(rblapack_difl, doublereal*);
  if (!NA_IsNArray(rblapack_givcol))
    rb_raise(rb_eArgError, "givcol (11th argument) must be NArray");
  if (NA_RANK(rblapack_givcol) != 2)
    rb_raise(rb_eArgError, "rank of givcol (11th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_givcol) != ldgcol)
    rb_raise(rb_eRuntimeError, "shape 0 of givcol must be the same as shape 0 of perm");
  if (NA_SHAPE1(rblapack_givcol) != (2 * nlvl))
    rb_raise(rb_eRuntimeError, "shape 1 of givcol must be %d", 2 * nlvl);
  if (NA_TYPE(rblapack_givcol) != NA_LINT)
    rblapack_givcol = na_change_type(rblapack_givcol, NA_LINT);
  givcol = NA_PTR_TYPE(rblapack_givcol, integer*);
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (8th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 2)
    rb_raise(rb_eArgError, "rank of z (8th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_z) != ldu)
    rb_raise(rb_eRuntimeError, "shape 0 of z must be the same as shape 0 of u");
  if (NA_SHAPE1(rblapack_z) != nlvl)
    rb_raise(rb_eRuntimeError, "shape 1 of z must be (int)(1.0/log(2.0)*log((double)n/(smlsiz+1))) + 1");
  if (NA_TYPE(rblapack_z) != NA_DFLOAT)
    rblapack_z = na_change_type(rblapack_z, NA_DFLOAT);
  z = NA_PTR_TYPE(rblapack_z, doublereal*);
  if (!NA_IsNArray(rblapack_givnum))
    rb_raise(rb_eArgError, "givnum (13th argument) must be NArray");
  if (NA_RANK(rblapack_givnum) != 2)
    rb_raise(rb_eArgError, "rank of givnum (13th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_givnum) != ldu)
    rb_raise(rb_eRuntimeError, "shape 0 of givnum must be the same as shape 0 of u");
  if (NA_SHAPE1(rblapack_givnum) != (2 * nlvl))
    rb_raise(rb_eRuntimeError, "shape 1 of givnum must be %d", 2 * nlvl);
  if (NA_TYPE(rblapack_givnum) != NA_DFLOAT)
    rblapack_givnum = na_change_type(rblapack_givnum, NA_DFLOAT);
  givnum = NA_PTR_TYPE(rblapack_givnum, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldbx;
    shape[1] = nrhs;
    rblapack_bx = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  bx = NA_PTR_TYPE(rblapack_bx, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  rwork = ALLOC_N(doublereal, (MAX(n,(smlsiz+1)*nrhs*3)));
  iwork = ALLOC_N(integer, (3 * n));

  zlalsa_(&icompq, &smlsiz, &n, &nrhs, b, &ldb, bx, &ldbx, u, &ldu, vt, k, difl, difr, z, poles, givptr, givcol, &ldgcol, perm, givnum, c, s, rwork, iwork, &info);

  free(rwork);
  free(iwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(3, rblapack_bx, rblapack_info, rblapack_b);
}

void
init_lapack_zlalsa(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zlalsa", rblapack_zlalsa, -1);
}