1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
#include "rb_lapack.h"
extern VOID zlaqge_(integer* m, integer* n, doublecomplex* a, integer* lda, doublereal* r, doublereal* c, doublereal* rowcnd, doublereal* colcnd, doublereal* amax, char* equed);
static VALUE
rblapack_zlaqge(int argc, VALUE *argv, VALUE self){
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_r;
doublereal *r;
VALUE rblapack_c;
doublereal *c;
VALUE rblapack_rowcnd;
doublereal rowcnd;
VALUE rblapack_colcnd;
doublereal colcnd;
VALUE rblapack_amax;
doublereal amax;
VALUE rblapack_equed;
char equed;
VALUE rblapack_a_out__;
doublecomplex *a_out__;
integer lda;
integer n;
integer m;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n equed, a = NumRu::Lapack.zlaqge( a, r, c, rowcnd, colcnd, amax, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLAQGE( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, EQUED )\n\n* Purpose\n* =======\n*\n* ZLAQGE equilibrates a general M by N matrix A using the row and\n* column scaling factors in the vectors R and C.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n* On entry, the M by N matrix A.\n* On exit, the equilibrated matrix. See EQUED for the form of\n* the equilibrated matrix.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(M,1).\n*\n* R (input) DOUBLE PRECISION array, dimension (M)\n* The row scale factors for A.\n*\n* C (input) DOUBLE PRECISION array, dimension (N)\n* The column scale factors for A.\n*\n* ROWCND (input) DOUBLE PRECISION\n* Ratio of the smallest R(i) to the largest R(i).\n*\n* COLCND (input) DOUBLE PRECISION\n* Ratio of the smallest C(i) to the largest C(i).\n*\n* AMAX (input) DOUBLE PRECISION\n* Absolute value of largest matrix entry.\n*\n* EQUED (output) CHARACTER*1\n* Specifies the form of equilibration that was done.\n* = 'N': No equilibration\n* = 'R': Row equilibration, i.e., A has been premultiplied by\n* diag(R).\n* = 'C': Column equilibration, i.e., A has been postmultiplied\n* by diag(C).\n* = 'B': Both row and column equilibration, i.e., A has been\n* replaced by diag(R) * A * diag(C).\n*\n* Internal Parameters\n* ===================\n*\n* THRESH is a threshold value used to decide if row or column scaling\n* should be done based on the ratio of the row or column scaling\n* factors. If ROWCND < THRESH, row scaling is done, and if\n* COLCND < THRESH, column scaling is done.\n*\n* LARGE and SMALL are threshold values used to decide if row scaling\n* should be done based on the absolute size of the largest matrix\n* element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n equed, a = NumRu::Lapack.zlaqge( a, r, c, rowcnd, colcnd, amax, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_a = argv[0];
rblapack_r = argv[1];
rblapack_c = argv[2];
rblapack_rowcnd = argv[3];
rblapack_colcnd = argv[4];
rblapack_amax = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (1th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (3th argument) must be NArray");
if (NA_RANK(rblapack_c) != 1)
rb_raise(rb_eArgError, "rank of c (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_c) != n)
rb_raise(rb_eRuntimeError, "shape 0 of c must be the same as shape 1 of a");
if (NA_TYPE(rblapack_c) != NA_DFLOAT)
rblapack_c = na_change_type(rblapack_c, NA_DFLOAT);
c = NA_PTR_TYPE(rblapack_c, doublereal*);
colcnd = NUM2DBL(rblapack_colcnd);
if (!NA_IsNArray(rblapack_r))
rb_raise(rb_eArgError, "r (2th argument) must be NArray");
if (NA_RANK(rblapack_r) != 1)
rb_raise(rb_eArgError, "rank of r (2th argument) must be %d", 1);
m = NA_SHAPE0(rblapack_r);
if (NA_TYPE(rblapack_r) != NA_DFLOAT)
rblapack_r = na_change_type(rblapack_r, NA_DFLOAT);
r = NA_PTR_TYPE(rblapack_r, doublereal*);
amax = NUM2DBL(rblapack_amax);
rowcnd = NUM2DBL(rblapack_rowcnd);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
zlaqge_(&m, &n, a, &lda, r, c, &rowcnd, &colcnd, &amax, &equed);
rblapack_equed = rb_str_new(&equed,1);
return rb_ary_new3(2, rblapack_equed, rblapack_a);
}
void
init_lapack_zlaqge(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zlaqge", rblapack_zlaqge, -1);
}
|