1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
#include "rb_lapack.h"
extern VOID zlarzb_(char* side, char* trans, char* direct, char* storev, integer* m, integer* n, integer* k, integer* l, doublecomplex* v, integer* ldv, doublecomplex* t, integer* ldt, doublecomplex* c, integer* ldc, doublecomplex* work, integer* ldwork);
static VALUE
rblapack_zlarzb(int argc, VALUE *argv, VALUE self){
VALUE rblapack_side;
char side;
VALUE rblapack_trans;
char trans;
VALUE rblapack_direct;
char direct;
VALUE rblapack_storev;
char storev;
VALUE rblapack_m;
integer m;
VALUE rblapack_l;
integer l;
VALUE rblapack_v;
doublecomplex *v;
VALUE rblapack_t;
doublecomplex *t;
VALUE rblapack_c;
doublecomplex *c;
VALUE rblapack_c_out__;
doublecomplex *c_out__;
doublecomplex *work;
integer ldv;
integer nv;
integer ldt;
integer k;
integer ldc;
integer n;
integer ldwork;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.zlarzb( side, trans, direct, storev, m, l, v, t, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T, LDT, C, LDC, WORK, LDWORK )\n\n* Purpose\n* =======\n*\n* ZLARZB applies a complex block reflector H or its transpose H**H\n* to a complex distributed M-by-N C from the left or the right.\n*\n* Currently, only STOREV = 'R' and DIRECT = 'B' are supported.\n*\n\n* Arguments\n* =========\n*\n* SIDE (input) CHARACTER*1\n* = 'L': apply H or H' from the Left\n* = 'R': apply H or H' from the Right\n*\n* TRANS (input) CHARACTER*1\n* = 'N': apply H (No transpose)\n* = 'C': apply H' (Conjugate transpose)\n*\n* DIRECT (input) CHARACTER*1\n* Indicates how H is formed from a product of elementary\n* reflectors\n* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)\n* = 'B': H = H(k) . . . H(2) H(1) (Backward)\n*\n* STOREV (input) CHARACTER*1\n* Indicates how the vectors which define the elementary\n* reflectors are stored:\n* = 'C': Columnwise (not supported yet)\n* = 'R': Rowwise\n*\n* M (input) INTEGER\n* The number of rows of the matrix C.\n*\n* N (input) INTEGER\n* The number of columns of the matrix C.\n*\n* K (input) INTEGER\n* The order of the matrix T (= the number of elementary\n* reflectors whose product defines the block reflector).\n*\n* L (input) INTEGER\n* The number of columns of the matrix V containing the\n* meaningful part of the Householder reflectors.\n* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.\n*\n* V (input) COMPLEX*16 array, dimension (LDV,NV).\n* If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.\n*\n* LDV (input) INTEGER\n* The leading dimension of the array V.\n* If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.\n*\n* T (input) COMPLEX*16 array, dimension (LDT,K)\n* The triangular K-by-K matrix T in the representation of the\n* block reflector.\n*\n* LDT (input) INTEGER\n* The leading dimension of the array T. LDT >= K.\n*\n* C (input/output) COMPLEX*16 array, dimension (LDC,N)\n* On entry, the M-by-N matrix C.\n* On exit, C is overwritten by H*C or H'*C or C*H or C*H'.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >= max(1,M).\n*\n* WORK (workspace) COMPLEX*16 array, dimension (LDWORK,K)\n*\n* LDWORK (input) INTEGER\n* The leading dimension of the array WORK.\n* If SIDE = 'L', LDWORK >= max(1,N);\n* if SIDE = 'R', LDWORK >= max(1,M).\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.zlarzb( side, trans, direct, storev, m, l, v, t, c, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 9 && argc != 9)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
rblapack_side = argv[0];
rblapack_trans = argv[1];
rblapack_direct = argv[2];
rblapack_storev = argv[3];
rblapack_m = argv[4];
rblapack_l = argv[5];
rblapack_v = argv[6];
rblapack_t = argv[7];
rblapack_c = argv[8];
if (argc == 9) {
} else if (rblapack_options != Qnil) {
} else {
}
side = StringValueCStr(rblapack_side)[0];
direct = StringValueCStr(rblapack_direct)[0];
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_v))
rb_raise(rb_eArgError, "v (7th argument) must be NArray");
if (NA_RANK(rblapack_v) != 2)
rb_raise(rb_eArgError, "rank of v (7th argument) must be %d", 2);
ldv = NA_SHAPE0(rblapack_v);
nv = NA_SHAPE1(rblapack_v);
if (NA_TYPE(rblapack_v) != NA_DCOMPLEX)
rblapack_v = na_change_type(rblapack_v, NA_DCOMPLEX);
v = NA_PTR_TYPE(rblapack_v, doublecomplex*);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (9th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (9th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
n = NA_SHAPE1(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_DCOMPLEX)
rblapack_c = na_change_type(rblapack_c, NA_DCOMPLEX);
c = NA_PTR_TYPE(rblapack_c, doublecomplex*);
trans = StringValueCStr(rblapack_trans)[0];
l = NUM2INT(rblapack_l);
ldwork = MAX(1,n) ? side = 'l' : MAX(1,m) ? side = 'r' : 0;
storev = StringValueCStr(rblapack_storev)[0];
if (!NA_IsNArray(rblapack_t))
rb_raise(rb_eArgError, "t (8th argument) must be NArray");
if (NA_RANK(rblapack_t) != 2)
rb_raise(rb_eArgError, "rank of t (8th argument) must be %d", 2);
ldt = NA_SHAPE0(rblapack_t);
k = NA_SHAPE1(rblapack_t);
if (NA_TYPE(rblapack_t) != NA_DCOMPLEX)
rblapack_t = na_change_type(rblapack_t, NA_DCOMPLEX);
t = NA_PTR_TYPE(rblapack_t, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, doublecomplex*);
MEMCPY(c_out__, c, doublecomplex, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
work = ALLOC_N(doublecomplex, (ldwork)*(k));
zlarzb_(&side, &trans, &direct, &storev, &m, &n, &k, &l, v, &ldv, t, &ldt, c, &ldc, work, &ldwork);
free(work);
return rblapack_c;
}
void
init_lapack_zlarzb(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zlarzb", rblapack_zlarzb, -1);
}
|