File: zpbsvx.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (201 lines) | stat: -rw-r--r-- 16,776 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#include "rb_lapack.h"

extern VOID zpbsvx_(char* fact, char* uplo, integer* n, integer* kd, integer* nrhs, doublecomplex* ab, integer* ldab, doublecomplex* afb, integer* ldafb, char* equed, doublereal* s, doublecomplex* b, integer* ldb, doublecomplex* x, integer* ldx, doublereal* rcond, doublereal* ferr, doublereal* berr, doublecomplex* work, doublereal* rwork, integer* info);


static VALUE
rblapack_zpbsvx(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_fact;
  char fact; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_kd;
  integer kd; 
  VALUE rblapack_ab;
  doublecomplex *ab; 
  VALUE rblapack_afb;
  doublecomplex *afb; 
  VALUE rblapack_equed;
  char equed; 
  VALUE rblapack_s;
  doublereal *s; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_x;
  doublecomplex *x; 
  VALUE rblapack_rcond;
  doublereal rcond; 
  VALUE rblapack_ferr;
  doublereal *ferr; 
  VALUE rblapack_berr;
  doublereal *berr; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ab_out__;
  doublecomplex *ab_out__;
  VALUE rblapack_afb_out__;
  doublecomplex *afb_out__;
  VALUE rblapack_s_out__;
  doublereal *s_out__;
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;
  doublecomplex *work;
  doublereal *rwork;

  integer ldab;
  integer n;
  integer ldafb;
  integer ldb;
  integer nrhs;
  integer ldx;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, rcond, ferr, berr, info, ab, afb, equed, s, b = NumRu::Lapack.zpbsvx( fact, uplo, kd, ab, afb, equed, s, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to\n*  compute the solution to a complex system of linear equations\n*     A * X = B,\n*  where A is an N-by-N Hermitian positive definite band matrix and X\n*  and B are N-by-NRHS matrices.\n*\n*  Error bounds on the solution and a condition estimate are also\n*  provided.\n*\n*  Description\n*  ===========\n*\n*  The following steps are performed:\n*\n*  1. If FACT = 'E', real scaling factors are computed to equilibrate\n*     the system:\n*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B\n*     Whether or not the system will be equilibrated depends on the\n*     scaling of the matrix A, but if equilibration is used, A is\n*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.\n*\n*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to\n*     factor the matrix A (after equilibration if FACT = 'E') as\n*        A = U**H * U,  if UPLO = 'U', or\n*        A = L * L**H,  if UPLO = 'L',\n*     where U is an upper triangular band matrix, and L is a lower\n*     triangular band matrix.\n*\n*  3. If the leading i-by-i principal minor is not positive definite,\n*     then the routine returns with INFO = i. Otherwise, the factored\n*     form of A is used to estimate the condition number of the matrix\n*     A.  If the reciprocal of the condition number is less than machine\n*     precision, INFO = N+1 is returned as a warning, but the routine\n*     still goes on to solve for X and compute error bounds as\n*     described below.\n*\n*  4. The system of equations is solved for X using the factored form\n*     of A.\n*\n*  5. Iterative refinement is applied to improve the computed solution\n*     matrix and calculate error bounds and backward error estimates\n*     for it.\n*\n*  6. If equilibration was used, the matrix X is premultiplied by\n*     diag(S) so that it solves the original system before\n*     equilibration.\n*\n\n*  Arguments\n*  =========\n*\n*  FACT    (input) CHARACTER*1\n*          Specifies whether or not the factored form of the matrix A is\n*          supplied on entry, and if not, whether the matrix A should be\n*          equilibrated before it is factored.\n*          = 'F':  On entry, AFB contains the factored form of A.\n*                  If EQUED = 'Y', the matrix A has been equilibrated\n*                  with scaling factors given by S.  AB and AFB will not\n*                  be modified.\n*          = 'N':  The matrix A will be copied to AFB and factored.\n*          = 'E':  The matrix A will be equilibrated if necessary, then\n*                  copied to AFB and factored.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The number of linear equations, i.e., the order of the\n*          matrix A.  N >= 0.\n*\n*  KD      (input) INTEGER\n*          The number of superdiagonals of the matrix A if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right-hand sides, i.e., the number of columns\n*          of the matrices B and X.  NRHS >= 0.\n*\n*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)\n*          On entry, the upper or lower triangle of the Hermitian band\n*          matrix A, stored in the first KD+1 rows of the array, except\n*          if FACT = 'F' and EQUED = 'Y', then A must contain the\n*          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A\n*          is stored in the j-th column of the array AB as follows:\n*          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;\n*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).\n*          See below for further details.\n*\n*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by\n*          diag(S)*A*diag(S).\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array A.  LDAB >= KD+1.\n*\n*  AFB     (input or output) COMPLEX*16 array, dimension (LDAFB,N)\n*          If FACT = 'F', then AFB is an input argument and on entry\n*          contains the triangular factor U or L from the Cholesky\n*          factorization A = U**H*U or A = L*L**H of the band matrix\n*          A, in the same storage format as A (see AB).  If EQUED = 'Y',\n*          then AFB is the factored form of the equilibrated matrix A.\n*\n*          If FACT = 'N', then AFB is an output argument and on exit\n*          returns the triangular factor U or L from the Cholesky\n*          factorization A = U**H*U or A = L*L**H.\n*\n*          If FACT = 'E', then AFB is an output argument and on exit\n*          returns the triangular factor U or L from the Cholesky\n*          factorization A = U**H*U or A = L*L**H of the equilibrated\n*          matrix A (see the description of A for the form of the\n*          equilibrated matrix).\n*\n*  LDAFB   (input) INTEGER\n*          The leading dimension of the array AFB.  LDAFB >= KD+1.\n*\n*  EQUED   (input or output) CHARACTER*1\n*          Specifies the form of equilibration that was done.\n*          = 'N':  No equilibration (always true if FACT = 'N').\n*          = 'Y':  Equilibration was done, i.e., A has been replaced by\n*                  diag(S) * A * diag(S).\n*          EQUED is an input argument if FACT = 'F'; otherwise, it is an\n*          output argument.\n*\n*  S       (input or output) DOUBLE PRECISION array, dimension (N)\n*          The scale factors for A; not accessed if EQUED = 'N'.  S is\n*          an input argument if FACT = 'F'; otherwise, S is an output\n*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S\n*          must be positive.\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n*          On entry, the N-by-NRHS right hand side matrix B.\n*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',\n*          B is overwritten by diag(S) * B.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)\n*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to\n*          the original system of equations.  Note that if EQUED = 'Y',\n*          A and B are modified on exit, and the solution to the\n*          equilibrated system is inv(diag(S))*X.\n*\n*  LDX     (input) INTEGER\n*          The leading dimension of the array X.  LDX >= max(1,N).\n*\n*  RCOND   (output) DOUBLE PRECISION\n*          The estimate of the reciprocal condition number of the matrix\n*          A after equilibration (if done).  If RCOND is less than the\n*          machine precision (in particular, if RCOND = 0), the matrix\n*          is singular to working precision.  This condition is\n*          indicated by a return code of INFO > 0.\n*\n*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)\n*          The estimated forward error bound for each solution vector\n*          X(j) (the j-th column of the solution matrix X).\n*          If XTRUE is the true solution corresponding to X(j), FERR(j)\n*          is an estimated upper bound for the magnitude of the largest\n*          element in (X(j) - XTRUE) divided by the magnitude of the\n*          largest element in X(j).  The estimate is as reliable as\n*          the estimate for RCOND, and is almost always a slight\n*          overestimate of the true error.\n*\n*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)\n*          The componentwise relative backward error of each solution\n*          vector X(j) (i.e., the smallest relative change in\n*          any element of A or B that makes X(j) an exact solution).\n*\n*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)\n*\n*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -i, the i-th argument had an illegal value\n*          > 0: if INFO = i, and i is\n*                <= N:  the leading minor of order i of A is\n*                       not positive definite, so the factorization\n*                       could not be completed, and the solution has not\n*                       been computed. RCOND = 0 is returned.\n*                = N+1: U is nonsingular, but RCOND is less than machine\n*                       precision, meaning that the matrix is singular\n*                       to working precision.  Nevertheless, the\n*                       solution and error bounds are computed because\n*                       there are a number of situations where the\n*                       computed solution can be more accurate than the\n*                       value of RCOND would suggest.\n*\n\n*  Further Details\n*  ===============\n*\n*  The band storage scheme is illustrated by the following example, when\n*  N = 6, KD = 2, and UPLO = 'U':\n*\n*  Two-dimensional storage of the Hermitian matrix A:\n*\n*     a11  a12  a13\n*          a22  a23  a24\n*               a33  a34  a35\n*                    a44  a45  a46\n*                         a55  a56\n*     (aij=conjg(aji))         a66\n*\n*  Band storage of the upper triangle of A:\n*\n*      *    *   a13  a24  a35  a46\n*      *   a12  a23  a34  a45  a56\n*     a11  a22  a33  a44  a55  a66\n*\n*  Similarly, if UPLO = 'L' the format of A is as follows:\n*\n*     a11  a22  a33  a44  a55  a66\n*     a21  a32  a43  a54  a65   *\n*     a31  a42  a53  a64   *    *\n*\n*  Array elements marked * are not used by the routine.\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, rcond, ferr, berr, info, ab, afb, equed, s, b = NumRu::Lapack.zpbsvx( fact, uplo, kd, ab, afb, equed, s, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_fact = argv[0];
  rblapack_uplo = argv[1];
  rblapack_kd = argv[2];
  rblapack_ab = argv[3];
  rblapack_afb = argv[4];
  rblapack_equed = argv[5];
  rblapack_s = argv[6];
  rblapack_b = argv[7];
  if (argc == 8) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  fact = StringValueCStr(rblapack_fact)[0];
  kd = NUM2INT(rblapack_kd);
  if (!NA_IsNArray(rblapack_afb))
    rb_raise(rb_eArgError, "afb (5th argument) must be NArray");
  if (NA_RANK(rblapack_afb) != 2)
    rb_raise(rb_eArgError, "rank of afb (5th argument) must be %d", 2);
  ldafb = NA_SHAPE0(rblapack_afb);
  n = NA_SHAPE1(rblapack_afb);
  if (NA_TYPE(rblapack_afb) != NA_DCOMPLEX)
    rblapack_afb = na_change_type(rblapack_afb, NA_DCOMPLEX);
  afb = NA_PTR_TYPE(rblapack_afb, doublecomplex*);
  if (!NA_IsNArray(rblapack_s))
    rb_raise(rb_eArgError, "s (7th argument) must be NArray");
  if (NA_RANK(rblapack_s) != 1)
    rb_raise(rb_eArgError, "rank of s (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_s) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of s must be the same as shape 1 of afb");
  if (NA_TYPE(rblapack_s) != NA_DFLOAT)
    rblapack_s = na_change_type(rblapack_s, NA_DFLOAT);
  s = NA_PTR_TYPE(rblapack_s, doublereal*);
  uplo = StringValueCStr(rblapack_uplo)[0];
  equed = StringValueCStr(rblapack_equed)[0];
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  if (NA_SHAPE1(rblapack_ab) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of ab must be the same as shape 1 of afb");
  if (NA_TYPE(rblapack_ab) != NA_DCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_DCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, doublecomplex*);
  ldx = MAX(1,n);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (8th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (8th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldx;
    shape[1] = nrhs;
    rblapack_x = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  x = NA_PTR_TYPE(rblapack_x, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_ferr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  ferr = NA_PTR_TYPE(rblapack_ferr, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_berr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  berr = NA_PTR_TYPE(rblapack_berr, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, doublecomplex*);
  MEMCPY(ab_out__, ab, doublecomplex, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldafb;
    shape[1] = n;
    rblapack_afb_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  afb_out__ = NA_PTR_TYPE(rblapack_afb_out__, doublecomplex*);
  MEMCPY(afb_out__, afb, doublecomplex, NA_TOTAL(rblapack_afb));
  rblapack_afb = rblapack_afb_out__;
  afb = afb_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_s_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  s_out__ = NA_PTR_TYPE(rblapack_s_out__, doublereal*);
  MEMCPY(s_out__, s, doublereal, NA_TOTAL(rblapack_s));
  rblapack_s = rblapack_s_out__;
  s = s_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  work = ALLOC_N(doublecomplex, (2*n));
  rwork = ALLOC_N(doublereal, (n));

  zpbsvx_(&fact, &uplo, &n, &kd, &nrhs, ab, &ldab, afb, &ldafb, &equed, s, b, &ldb, x, &ldx, &rcond, ferr, berr, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_rcond = rb_float_new((double)rcond);
  rblapack_info = INT2NUM(info);
  rblapack_equed = rb_str_new(&equed,1);
  return rb_ary_new3(10, rblapack_x, rblapack_rcond, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_ab, rblapack_afb, rblapack_equed, rblapack_s, rblapack_b);
}

void
init_lapack_zpbsvx(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zpbsvx", rblapack_zpbsvx, -1);
}