File: zppequ.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (79 lines) | stat: -rw-r--r-- 4,535 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include "rb_lapack.h"

extern VOID zppequ_(char* uplo, integer* n, doublecomplex* ap, doublereal* s, doublereal* scond, doublereal* amax, integer* info);


static VALUE
rblapack_zppequ(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_ap;
  doublecomplex *ap; 
  VALUE rblapack_s;
  doublereal *s; 
  VALUE rblapack_scond;
  doublereal scond; 
  VALUE rblapack_amax;
  doublereal amax; 
  VALUE rblapack_info;
  integer info; 

  integer ldap;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  s, scond, amax, info = NumRu::Lapack.zppequ( uplo, ap, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZPPEQU computes row and column scalings intended to equilibrate a\n*  Hermitian positive definite matrix A in packed storage and reduce\n*  its condition number (with respect to the two-norm).  S contains the\n*  scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix\n*  B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.\n*  This choice of S puts the condition number of B within a factor N of\n*  the smallest possible condition number over all possible diagonal\n*  scalings.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)\n*          The upper or lower triangle of the Hermitian matrix A, packed\n*          columnwise in a linear array.  The j-th column of A is stored\n*          in the array AP as follows:\n*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n*\n*  S       (output) DOUBLE PRECISION array, dimension (N)\n*          If INFO = 0, S contains the scale factors for A.\n*\n*  SCOND   (output) DOUBLE PRECISION\n*          If INFO = 0, S contains the ratio of the smallest S(i) to\n*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too\n*          large nor too small, it is not worth scaling by S.\n*\n*  AMAX    (output) DOUBLE PRECISION\n*          Absolute value of largest matrix element.  If AMAX is very\n*          close to overflow or very close to underflow, the matrix\n*          should be scaled.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i, the i-th diagonal element is nonpositive.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  s, scond, amax, info = NumRu::Lapack.zppequ( uplo, ap, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 2 && argc != 2)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
  rblapack_uplo = argv[0];
  rblapack_ap = argv[1];
  if (argc == 2) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ap))
    rb_raise(rb_eArgError, "ap (2th argument) must be NArray");
  if (NA_RANK(rblapack_ap) != 1)
    rb_raise(rb_eArgError, "rank of ap (2th argument) must be %d", 1);
  ldap = NA_SHAPE0(rblapack_ap);
  if (NA_TYPE(rblapack_ap) != NA_DCOMPLEX)
    rblapack_ap = na_change_type(rblapack_ap, NA_DCOMPLEX);
  ap = NA_PTR_TYPE(rblapack_ap, doublecomplex*);
  n = ((int)sqrtf(ldap*8+1.0f)-1)/2;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_s = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  s = NA_PTR_TYPE(rblapack_s, doublereal*);

  zppequ_(&uplo, &n, ap, s, &scond, &amax, &info);

  rblapack_scond = rb_float_new((double)scond);
  rblapack_amax = rb_float_new((double)amax);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(4, rblapack_s, rblapack_scond, rblapack_amax, rblapack_info);
}

void
init_lapack_zppequ(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zppequ", rblapack_zppequ, -1);
}