1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
#include "rb_lapack.h"
extern VOID zppsv_(char* uplo, integer* n, integer* nrhs, doublecomplex* ap, doublecomplex* b, integer* ldb, integer* info);
static VALUE
rblapack_zppsv(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_n;
integer n;
VALUE rblapack_ap;
doublecomplex *ap;
VALUE rblapack_b;
doublecomplex *b;
VALUE rblapack_info;
integer info;
VALUE rblapack_ap_out__;
doublecomplex *ap_out__;
VALUE rblapack_b_out__;
doublecomplex *b_out__;
integer ldb;
integer nrhs;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, ap, b = NumRu::Lapack.zppsv( uplo, n, ap, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZPPSV( UPLO, N, NRHS, AP, B, LDB, INFO )\n\n* Purpose\n* =======\n*\n* ZPPSV computes the solution to a complex system of linear equations\n* A * X = B,\n* where A is an N-by-N Hermitian positive definite matrix stored in\n* packed format and X and B are N-by-NRHS matrices.\n*\n* The Cholesky decomposition is used to factor A as\n* A = U**H* U, if UPLO = 'U', or\n* A = L * L**H, if UPLO = 'L',\n* where U is an upper triangular matrix and L is a lower triangular\n* matrix. The factored form of A is then used to solve the system of\n* equations A * X = B.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n* On entry, the upper or lower triangle of the Hermitian matrix\n* A, packed columnwise in a linear array. The j-th column of A\n* is stored in the array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n* See below for further details.\n*\n* On exit, if INFO = 0, the factor U or L from the Cholesky\n* factorization A = U**H*U or A = L*L**H, in the same storage\n* format as A.\n*\n* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n* On entry, the N-by-NRHS right hand side matrix B.\n* On exit, if INFO = 0, the N-by-NRHS solution matrix X.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the leading minor of order i of A is not\n* positive definite, so the factorization could not be\n* completed, and the solution has not been computed.\n*\n\n* Further Details\n* ===============\n*\n* The packed storage scheme is illustrated by the following example\n* when N = 4, UPLO = 'U':\n*\n* Two-dimensional storage of the Hermitian matrix A:\n*\n* a11 a12 a13 a14\n* a22 a23 a24\n* a33 a34 (aij = conjg(aji))\n* a44\n*\n* Packed storage of the upper triangle of A:\n*\n* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]\n*\n* =====================================================================\n*\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL XERBLA, ZPPTRF, ZPPTRS\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, ap, b = NumRu::Lapack.zppsv( uplo, n, ap, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_uplo = argv[0];
rblapack_n = argv[1];
rblapack_ap = argv[2];
rblapack_b = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (4th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
n = NUM2INT(rblapack_n);
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (3th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ap) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of ap must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_ap) != NA_DCOMPLEX)
rblapack_ap = na_change_type(rblapack_ap, NA_DCOMPLEX);
ap = NA_PTR_TYPE(rblapack_ap, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = n*(n+1)/2;
rblapack_ap_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, doublecomplex*);
MEMCPY(ap_out__, ap, doublecomplex, NA_TOTAL(rblapack_ap));
rblapack_ap = rblapack_ap_out__;
ap = ap_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = nrhs;
rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
zppsv_(&uplo, &n, &nrhs, ap, b, &ldb, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_info, rblapack_ap, rblapack_b);
}
void
init_lapack_zppsv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zppsv", rblapack_zppsv, -1);
}
|