File: zpstrf.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (95 lines) | stat: -rw-r--r-- 5,547 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#include "rb_lapack.h"

extern VOID zpstrf_(char* uplo, integer* n, doublecomplex* a, integer* lda, integer* piv, integer* rank, doublereal* tol, doublereal* work, integer* info);


static VALUE
rblapack_zpstrf(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_tol;
  doublereal tol; 
  VALUE rblapack_piv;
  integer *piv; 
  VALUE rblapack_rank;
  integer rank; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;
  doublereal *work;

  integer lda;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  piv, rank, info, a = NumRu::Lapack.zpstrf( uplo, a, tol, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZPSTRF computes the Cholesky factorization with complete\n*  pivoting of a complex Hermitian positive semidefinite matrix A.\n*\n*  The factorization has the form\n*     P' * A * P = U' * U ,  if UPLO = 'U',\n*     P' * A * P = L  * L',  if UPLO = 'L',\n*  where U is an upper triangular matrix and L is lower triangular, and\n*  P is stored as vector PIV.\n*\n*  This algorithm does not attempt to check that A is positive\n*  semidefinite. This version of the algorithm calls level 3 BLAS.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          Specifies whether the upper or lower triangular part of the\n*          symmetric matrix A is stored.\n*          = 'U':  Upper triangular\n*          = 'L':  Lower triangular\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading\n*          n by n upper triangular part of A contains the upper\n*          triangular part of the matrix A, and the strictly lower\n*          triangular part of A is not referenced.  If UPLO = 'L', the\n*          leading n by n lower triangular part of A contains the lower\n*          triangular part of the matrix A, and the strictly upper\n*          triangular part of A is not referenced.\n*\n*          On exit, if INFO = 0, the factor U or L from the Cholesky\n*          factorization as above.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  PIV     (output) INTEGER array, dimension (N)\n*          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.\n*\n*  RANK    (output) INTEGER\n*          The rank of A given by the number of steps the algorithm\n*          completed.\n*\n*  TOL     (input) DOUBLE PRECISION\n*          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )\n*          will be used. The algorithm terminates at the (K-1)st step\n*          if the pivot <= TOL.\n*\n*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)\n*          Work space.\n*\n*  INFO    (output) INTEGER\n*          < 0: If INFO = -K, the K-th argument had an illegal value,\n*          = 0: algorithm completed successfully, and\n*          > 0: the matrix A is either rank deficient with computed rank\n*               as returned in RANK, or is indefinite.  See Section 7 of\n*               LAPACK Working Note #161 for further information.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  piv, rank, info, a = NumRu::Lapack.zpstrf( uplo, a, tol, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_uplo = argv[0];
  rblapack_a = argv[1];
  rblapack_tol = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  tol = NUM2DBL(rblapack_tol);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (2th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_piv = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  piv = NA_PTR_TYPE(rblapack_piv, integer*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  work = ALLOC_N(doublereal, (2*n));

  zpstrf_(&uplo, &n, a, &lda, piv, &rank, &tol, work, &info);

  free(work);
  rblapack_rank = INT2NUM(rank);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(4, rblapack_piv, rblapack_rank, rblapack_info, rblapack_a);
}

void
init_lapack_zpstrf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zpstrf", rblapack_zpstrf, -1);
}