1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#include "rb_lapack.h"
extern VOID zptrfs_(char* uplo, integer* n, integer* nrhs, doublereal* d, doublecomplex* e, doublereal* df, doublecomplex* ef, doublecomplex* b, integer* ldb, doublecomplex* x, integer* ldx, doublereal* ferr, doublereal* berr, doublecomplex* work, doublereal* rwork, integer* info);
static VALUE
rblapack_zptrfs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_e;
doublecomplex *e;
VALUE rblapack_df;
doublereal *df;
VALUE rblapack_ef;
doublecomplex *ef;
VALUE rblapack_b;
doublecomplex *b;
VALUE rblapack_x;
doublecomplex *x;
VALUE rblapack_ferr;
doublereal *ferr;
VALUE rblapack_berr;
doublereal *berr;
VALUE rblapack_info;
integer info;
VALUE rblapack_x_out__;
doublecomplex *x_out__;
doublecomplex *work;
doublereal *rwork;
integer n;
integer ldb;
integer nrhs;
integer ldx;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.zptrfs( uplo, d, e, df, ef, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZPTRFS improves the computed solution to a system of linear\n* equations when the coefficient matrix is Hermitian positive definite\n* and tridiagonal, and provides error bounds and backward error\n* estimates for the solution.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* Specifies whether the superdiagonal or the subdiagonal of the\n* tridiagonal matrix A is stored and the form of the\n* factorization:\n* = 'U': E is the superdiagonal of A, and A = U**H*D*U;\n* = 'L': E is the subdiagonal of A, and A = L*D*L**H.\n* (The two forms are equivalent if A is real.)\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* D (input) DOUBLE PRECISION array, dimension (N)\n* The n real diagonal elements of the tridiagonal matrix A.\n*\n* E (input) COMPLEX*16 array, dimension (N-1)\n* The (n-1) off-diagonal elements of the tridiagonal matrix A\n* (see UPLO).\n*\n* DF (input) DOUBLE PRECISION array, dimension (N)\n* The n diagonal elements of the diagonal matrix D from\n* the factorization computed by ZPTTRF.\n*\n* EF (input) COMPLEX*16 array, dimension (N-1)\n* The (n-1) off-diagonal elements of the unit bidiagonal\n* factor U or L from the factorization computed by ZPTTRF\n* (see UPLO).\n*\n* B (input) COMPLEX*16 array, dimension (LDB,NRHS)\n* The right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (input/output) COMPLEX*16 array, dimension (LDX,NRHS)\n* On entry, the solution matrix X, as computed by ZPTTRS.\n* On exit, the improved solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* FERR (output) DOUBLE PRECISION array, dimension (NRHS)\n* The forward error bound for each solution vector\n* X(j) (the j-th column of the solution matrix X).\n* If XTRUE is the true solution corresponding to X(j), FERR(j)\n* is an estimated upper bound for the magnitude of the largest\n* element in (X(j) - XTRUE) divided by the magnitude of the\n* largest element in X(j).\n*\n* BERR (output) DOUBLE PRECISION array, dimension (NRHS)\n* The componentwise relative backward error of each solution\n* vector X(j) (i.e., the smallest relative change in\n* any element of A or B that makes X(j) an exact solution).\n*\n* WORK (workspace) COMPLEX*16 array, dimension (N)\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n* Internal Parameters\n* ===================\n*\n* ITMAX is the maximum number of steps of iterative refinement.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.zptrfs( uplo, d, e, df, ef, b, x, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 7 && argc != 7)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
rblapack_uplo = argv[0];
rblapack_d = argv[1];
rblapack_e = argv[2];
rblapack_df = argv[3];
rblapack_ef = argv[4];
rblapack_b = argv[5];
rblapack_x = argv[6];
if (argc == 7) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_df))
rb_raise(rb_eArgError, "df (4th argument) must be NArray");
if (NA_RANK(rblapack_df) != 1)
rb_raise(rb_eArgError, "rank of df (4th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_df);
if (NA_TYPE(rblapack_df) != NA_DFLOAT)
rblapack_df = na_change_type(rblapack_df, NA_DFLOAT);
df = NA_PTR_TYPE(rblapack_df, doublereal*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (6th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (6th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (2th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_d) != n)
rb_raise(rb_eRuntimeError, "shape 0 of d must be the same as shape 0 of df");
if (NA_TYPE(rblapack_d) != NA_DFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
d = NA_PTR_TYPE(rblapack_d, doublereal*);
if (!NA_IsNArray(rblapack_ef))
rb_raise(rb_eArgError, "ef (5th argument) must be NArray");
if (NA_RANK(rblapack_ef) != 1)
rb_raise(rb_eArgError, "rank of ef (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ef) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of ef must be %d", n-1);
if (NA_TYPE(rblapack_ef) != NA_DCOMPLEX)
rblapack_ef = na_change_type(rblapack_ef, NA_DCOMPLEX);
ef = NA_PTR_TYPE(rblapack_ef, doublecomplex*);
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (3th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_e) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", n-1);
if (NA_TYPE(rblapack_e) != NA_DCOMPLEX)
rblapack_e = na_change_type(rblapack_e, NA_DCOMPLEX);
e = NA_PTR_TYPE(rblapack_e, doublecomplex*);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (7th argument) must be NArray");
if (NA_RANK(rblapack_x) != 2)
rb_raise(rb_eArgError, "rank of x (7th argument) must be %d", 2);
ldx = NA_SHAPE0(rblapack_x);
if (NA_SHAPE1(rblapack_x) != nrhs)
rb_raise(rb_eRuntimeError, "shape 1 of x must be the same as shape 1 of b");
if (NA_TYPE(rblapack_x) != NA_DCOMPLEX)
rblapack_x = na_change_type(rblapack_x, NA_DCOMPLEX);
x = NA_PTR_TYPE(rblapack_x, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_ferr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
ferr = NA_PTR_TYPE(rblapack_ferr, doublereal*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_berr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
berr = NA_PTR_TYPE(rblapack_berr, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldx;
shape[1] = nrhs;
rblapack_x_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
x_out__ = NA_PTR_TYPE(rblapack_x_out__, doublecomplex*);
MEMCPY(x_out__, x, doublecomplex, NA_TOTAL(rblapack_x));
rblapack_x = rblapack_x_out__;
x = x_out__;
work = ALLOC_N(doublecomplex, (n));
rwork = ALLOC_N(doublereal, (n));
zptrfs_(&uplo, &n, &nrhs, d, e, df, ef, b, &ldb, x, &ldx, ferr, berr, work, rwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_x);
}
void
init_lapack_zptrfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zptrfs", rblapack_zptrfs, -1);
}
|