File: zptts2.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (98 lines) | stat: -rw-r--r-- 5,353 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include "rb_lapack.h"

extern VOID zptts2_(integer* iuplo, integer* n, integer* nrhs, doublereal* d, doublecomplex* e, doublecomplex* b, integer* ldb);


static VALUE
rblapack_zptts2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_iuplo;
  integer iuplo; 
  VALUE rblapack_d;
  doublereal *d; 
  VALUE rblapack_e;
  doublecomplex *e; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;

  integer n;
  integer ldb;
  integer nrhs;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  b = NumRu::Lapack.zptts2( iuplo, d, e, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )\n\n*  Purpose\n*  =======\n*\n*  ZPTTS2 solves a tridiagonal system of the form\n*     A * X = B\n*  using the factorization A = U'*D*U or A = L*D*L' computed by ZPTTRF.\n*  D is a diagonal matrix specified in the vector D, U (or L) is a unit\n*  bidiagonal matrix whose superdiagonal (subdiagonal) is specified in\n*  the vector E, and X and B are N by NRHS matrices.\n*\n\n*  Arguments\n*  =========\n*\n*  IUPLO   (input) INTEGER\n*          Specifies the form of the factorization and whether the\n*          vector E is the superdiagonal of the upper bidiagonal factor\n*          U or the subdiagonal of the lower bidiagonal factor L.\n*          = 1:  A = U'*D*U, E is the superdiagonal of U\n*          = 0:  A = L*D*L', E is the subdiagonal of L\n*\n*  N       (input) INTEGER\n*          The order of the tridiagonal matrix A.  N >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrix B.  NRHS >= 0.\n*\n*  D       (input) DOUBLE PRECISION array, dimension (N)\n*          The n diagonal elements of the diagonal matrix D from the\n*          factorization A = U'*D*U or A = L*D*L'.\n*\n*  E       (input) COMPLEX*16 array, dimension (N-1)\n*          If IUPLO = 1, the (n-1) superdiagonal elements of the unit\n*          bidiagonal factor U from the factorization A = U'*D*U.\n*          If IUPLO = 0, the (n-1) subdiagonal elements of the unit\n*          bidiagonal factor L from the factorization A = L*D*L'.\n*\n*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)\n*          On entry, the right hand side vectors B for the system of\n*          linear equations.\n*          On exit, the solution vectors, X.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      INTEGER            I, J\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           ZDSCAL\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          DCONJG\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  b = NumRu::Lapack.zptts2( iuplo, d, e, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_iuplo = argv[0];
  rblapack_d = argv[1];
  rblapack_e = argv[2];
  rblapack_b = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  iuplo = NUM2INT(rblapack_iuplo);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (2th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (2th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_DFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
  d = NA_PTR_TYPE(rblapack_d, doublereal*);
  if (!NA_IsNArray(rblapack_e))
    rb_raise(rb_eArgError, "e (3th argument) must be NArray");
  if (NA_RANK(rblapack_e) != 1)
    rb_raise(rb_eArgError, "rank of e (3th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_e) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", n-1);
  if (NA_TYPE(rblapack_e) != NA_DCOMPLEX)
    rblapack_e = na_change_type(rblapack_e, NA_DCOMPLEX);
  e = NA_PTR_TYPE(rblapack_e, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  zptts2_(&iuplo, &n, &nrhs, d, e, b, &ldb);

  return rblapack_b;
}

void
init_lapack_zptts2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zptts2", rblapack_zptts2, -1);
}