File: zrot.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (107 lines) | stat: -rw-r--r-- 4,825 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#include "rb_lapack.h"

extern VOID zrot_(integer* n, doublecomplex* cx, integer* incx, doublecomplex* cy, integer* incy, doublereal* c, doublecomplex* s);


static VALUE
rblapack_zrot(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_cx;
  doublecomplex *cx; 
  VALUE rblapack_incx;
  integer incx; 
  VALUE rblapack_cy;
  doublecomplex *cy; 
  VALUE rblapack_incy;
  integer incy; 
  VALUE rblapack_c;
  doublereal c; 
  VALUE rblapack_s;
  doublecomplex s; 
  VALUE rblapack_cx_out__;
  doublecomplex *cx_out__;
  VALUE rblapack_cy_out__;
  doublecomplex *cy_out__;

  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  cx, cy = NumRu::Lapack.zrot( cx, incx, cy, incy, c, s, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZROT( N, CX, INCX, CY, INCY, C, S )\n\n*  Purpose\n*  =======\n*\n*  ZROT   applies a plane rotation, where the cos (C) is real and the\n*  sin (S) is complex, and the vectors CX and CY are complex.\n*\n\n*  Arguments\n*  =========\n*\n*  N       (input) INTEGER\n*          The number of elements in the vectors CX and CY.\n*\n*  CX      (input/output) COMPLEX*16 array, dimension (N)\n*          On input, the vector X.\n*          On output, CX is overwritten with C*X + S*Y.\n*\n*  INCX    (input) INTEGER\n*          The increment between successive values of CY.  INCX <> 0.\n*\n*  CY      (input/output) COMPLEX*16 array, dimension (N)\n*          On input, the vector Y.\n*          On output, CY is overwritten with -CONJG(S)*X + C*Y.\n*\n*  INCY    (input) INTEGER\n*          The increment between successive values of CY.  INCX <> 0.\n*\n*  C       (input) DOUBLE PRECISION\n*  S       (input) COMPLEX*16\n*          C and S define a rotation\n*             [  C          S  ]\n*             [ -conjg(S)   C  ]\n*          where C*C + S*CONJG(S) = 1.0.\n*\n\n* =====================================================================\n*\n*     .. Local Scalars ..\n      INTEGER            I, IX, IY\n      COMPLEX*16         STEMP\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          DCONJG\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  cx, cy = NumRu::Lapack.zrot( cx, incx, cy, incy, c, s, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 6 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
  rblapack_cx = argv[0];
  rblapack_incx = argv[1];
  rblapack_cy = argv[2];
  rblapack_incy = argv[3];
  rblapack_c = argv[4];
  rblapack_s = argv[5];
  if (argc == 6) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  if (!NA_IsNArray(rblapack_cx))
    rb_raise(rb_eArgError, "cx (1th argument) must be NArray");
  if (NA_RANK(rblapack_cx) != 1)
    rb_raise(rb_eArgError, "rank of cx (1th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_cx);
  if (NA_TYPE(rblapack_cx) != NA_DCOMPLEX)
    rblapack_cx = na_change_type(rblapack_cx, NA_DCOMPLEX);
  cx = NA_PTR_TYPE(rblapack_cx, doublecomplex*);
  if (!NA_IsNArray(rblapack_cy))
    rb_raise(rb_eArgError, "cy (3th argument) must be NArray");
  if (NA_RANK(rblapack_cy) != 1)
    rb_raise(rb_eArgError, "rank of cy (3th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_cy) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of cy must be the same as shape 0 of cx");
  if (NA_TYPE(rblapack_cy) != NA_DCOMPLEX)
    rblapack_cy = na_change_type(rblapack_cy, NA_DCOMPLEX);
  cy = NA_PTR_TYPE(rblapack_cy, doublecomplex*);
  c = NUM2DBL(rblapack_c);
  incx = NUM2INT(rblapack_incx);
  s.r = NUM2DBL(rb_funcall(rblapack_s, rb_intern("real"), 0));
  s.i = NUM2DBL(rb_funcall(rblapack_s, rb_intern("imag"), 0));
  incy = NUM2INT(rblapack_incy);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_cx_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  cx_out__ = NA_PTR_TYPE(rblapack_cx_out__, doublecomplex*);
  MEMCPY(cx_out__, cx, doublecomplex, NA_TOTAL(rblapack_cx));
  rblapack_cx = rblapack_cx_out__;
  cx = cx_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_cy_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  cy_out__ = NA_PTR_TYPE(rblapack_cy_out__, doublecomplex*);
  MEMCPY(cy_out__, cy, doublecomplex, NA_TOTAL(rblapack_cy));
  rblapack_cy = rblapack_cy_out__;
  cy = cy_out__;

  zrot_(&n, cx, &incx, cy, &incy, &c, &s);

  return rb_ary_new3(2, rblapack_cx, rblapack_cy);
}

void
init_lapack_zrot(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zrot", rblapack_zrot, -1);
}