1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|
#include "rb_lapack.h"
extern VOID zsyswapr_(char* uplo, integer* n, doublecomplex* a, integer* i1, integer* i2);
static VALUE
rblapack_zsyswapr(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_i1;
integer i1;
VALUE rblapack_i2;
integer i2;
VALUE rblapack_a_out__;
doublecomplex *a_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n a = NumRu::Lapack.zsyswapr( uplo, a, i1, i2, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZSYSWAPR( UPLO, N, A, I1, I2)\n\n* Purpose\n* =======\n*\n* ZSYSWAPR applies an elementary permutation on the rows and the columns of\n* a symmetric matrix.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* Specifies whether the details of the factorization are stored\n* as an upper or lower triangular matrix.\n* = 'U': Upper triangular, form is A = U*D*U**T;\n* = 'L': Lower triangular, form is A = L*D*L**T.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) DOUBLE COMPLEX array, dimension (LDA,N)\n* On entry, the NB diagonal matrix D and the multipliers\n* used to obtain the factor U or L as computed by ZSYTRF.\n*\n* On exit, if INFO = 0, the (symmetric) inverse of the original\n* matrix. If UPLO = 'U', the upper triangular part of the\n* inverse is formed and the part of A below the diagonal is not\n* referenced; if UPLO = 'L' the lower triangular part of the\n* inverse is formed and the part of A above the diagonal is\n* not referenced.\n*\n* I1 (input) INTEGER\n* Index of the first row to swap\n*\n* I2 (input) INTEGER\n* Index of the second row to swap\n*\n\n* =====================================================================\n*\n* ..\n* .. Local Scalars ..\n LOGICAL UPPER\n INTEGER I\n DOUBLE COMPLEX TMP\n*\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL ZSWAP\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n a = NumRu::Lapack.zsyswapr( uplo, a, i1, i2, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
rblapack_i1 = argv[2];
rblapack_i2 = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
i1 = NUM2INT(rblapack_i1);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
i2 = NUM2INT(rblapack_i2);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
zsyswapr_(&uplo, &n, a, &i1, &i2);
return rblapack_a;
}
void
init_lapack_zsyswapr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zsyswapr", rblapack_zsyswapr, -1);
}
|