File: ztgsy2.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (176 lines) | stat: -rw-r--r-- 12,610 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#include "rb_lapack.h"

extern VOID ztgsy2_(char* trans, integer* ijob, integer* m, integer* n, doublecomplex* a, integer* lda, doublecomplex* b, integer* ldb, doublecomplex* c, integer* ldc, doublecomplex* d, integer* ldd, doublecomplex* e, integer* lde, doublecomplex* f, integer* ldf, doublereal* scale, doublereal* rdsum, doublereal* rdscal, integer* info);


static VALUE
rblapack_ztgsy2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_ijob;
  integer ijob; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_c;
  doublecomplex *c; 
  VALUE rblapack_d;
  doublecomplex *d; 
  VALUE rblapack_e;
  doublecomplex *e; 
  VALUE rblapack_f;
  doublecomplex *f; 
  VALUE rblapack_rdsum;
  doublereal rdsum; 
  VALUE rblapack_rdscal;
  doublereal rdscal; 
  VALUE rblapack_scale;
  doublereal scale; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_c_out__;
  doublecomplex *c_out__;
  VALUE rblapack_f_out__;
  doublecomplex *f_out__;

  integer lda;
  integer m;
  integer ldb;
  integer n;
  integer ldc;
  integer ldd;
  integer lde;
  integer ldf;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  scale, info, c, f, rdsum, rdscal = NumRu::Lapack.ztgsy2( trans, ijob, a, b, c, d, e, f, rdsum, rdscal, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZTGSY2 solves the generalized Sylvester equation\n*\n*              A * R - L * B = scale *   C               (1)\n*              D * R - L * E = scale * F\n*\n*  using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,\n*  (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,\n*  N-by-N and M-by-N, respectively. A, B, D and E are upper triangular\n*  (i.e., (A,D) and (B,E) in generalized Schur form).\n*\n*  The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output\n*  scaling factor chosen to avoid overflow.\n*\n*  In matrix notation solving equation (1) corresponds to solve\n*  Zx = scale * b, where Z is defined as\n*\n*         Z = [ kron(In, A)  -kron(B', Im) ]             (2)\n*             [ kron(In, D)  -kron(E', Im) ],\n*\n*  Ik is the identity matrix of size k and X' is the transpose of X.\n*  kron(X, Y) is the Kronecker product between the matrices X and Y.\n*\n*  If TRANS = 'C', y in the conjugate transposed system Z'y = scale*b\n*  is solved for, which is equivalent to solve for R and L in\n*\n*              A' * R  + D' * L   = scale *  C           (3)\n*              R  * B' + L  * E'  = scale * -F\n*\n*  This case is used to compute an estimate of Dif[(A, D), (B, E)] =\n*  = sigma_min(Z) using reverse communicaton with ZLACON.\n*\n*  ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL\n*  of an upper bound on the separation between to matrix pairs. Then\n*  the input (A, D), (B, E) are sub-pencils of two matrix pairs in\n*  ZTGSYL.\n*\n\n*  Arguments\n*  =========\n*\n*  TRANS   (input) CHARACTER*1\n*          = 'N', solve the generalized Sylvester equation (1).\n*          = 'T': solve the 'transposed' system (3).\n*\n*  IJOB    (input) INTEGER\n*          Specifies what kind of functionality to be performed.\n*          =0: solve (1) only.\n*          =1: A contribution from this subsystem to a Frobenius\n*              norm-based estimate of the separation between two matrix\n*              pairs is computed. (look ahead strategy is used).\n*          =2: A contribution from this subsystem to a Frobenius\n*              norm-based estimate of the separation between two matrix\n*              pairs is computed. (DGECON on sub-systems is used.)\n*          Not referenced if TRANS = 'T'.\n*\n*  M       (input) INTEGER\n*          On entry, M specifies the order of A and D, and the row\n*          dimension of C, F, R and L.\n*\n*  N       (input) INTEGER\n*          On entry, N specifies the order of B and E, and the column\n*          dimension of C, F, R and L.\n*\n*  A       (input) COMPLEX*16 array, dimension (LDA, M)\n*          On entry, A contains an upper triangular matrix.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the matrix A. LDA >= max(1, M).\n*\n*  B       (input) COMPLEX*16 array, dimension (LDB, N)\n*          On entry, B contains an upper triangular matrix.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the matrix B. LDB >= max(1, N).\n*\n*  C       (input/output) COMPLEX*16 array, dimension (LDC, N)\n*          On entry, C contains the right-hand-side of the first matrix\n*          equation in (1).\n*          On exit, if IJOB = 0, C has been overwritten by the solution\n*          R.\n*\n*  LDC     (input) INTEGER\n*          The leading dimension of the matrix C. LDC >= max(1, M).\n*\n*  D       (input) COMPLEX*16 array, dimension (LDD, M)\n*          On entry, D contains an upper triangular matrix.\n*\n*  LDD     (input) INTEGER\n*          The leading dimension of the matrix D. LDD >= max(1, M).\n*\n*  E       (input) COMPLEX*16 array, dimension (LDE, N)\n*          On entry, E contains an upper triangular matrix.\n*\n*  LDE     (input) INTEGER\n*          The leading dimension of the matrix E. LDE >= max(1, N).\n*\n*  F       (input/output) COMPLEX*16 array, dimension (LDF, N)\n*          On entry, F contains the right-hand-side of the second matrix\n*          equation in (1).\n*          On exit, if IJOB = 0, F has been overwritten by the solution\n*          L.\n*\n*  LDF     (input) INTEGER\n*          The leading dimension of the matrix F. LDF >= max(1, M).\n*\n*  SCALE   (output) DOUBLE PRECISION\n*          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions\n*          R and L (C and F on entry) will hold the solutions to a\n*          slightly perturbed system but the input matrices A, B, D and\n*          E have not been changed. If SCALE = 0, R and L will hold the\n*          solutions to the homogeneous system with C = F = 0.\n*          Normally, SCALE = 1.\n*\n*  RDSUM   (input/output) DOUBLE PRECISION\n*          On entry, the sum of squares of computed contributions to\n*          the Dif-estimate under computation by ZTGSYL, where the\n*          scaling factor RDSCAL (see below) has been factored out.\n*          On exit, the corresponding sum of squares updated with the\n*          contributions from the current sub-system.\n*          If TRANS = 'T' RDSUM is not touched.\n*          NOTE: RDSUM only makes sense when ZTGSY2 is called by\n*          ZTGSYL.\n*\n*  RDSCAL  (input/output) DOUBLE PRECISION\n*          On entry, scaling factor used to prevent overflow in RDSUM.\n*          On exit, RDSCAL is updated w.r.t. the current contributions\n*          in RDSUM.\n*          If TRANS = 'T', RDSCAL is not touched.\n*          NOTE: RDSCAL only makes sense when ZTGSY2 is called by\n*          ZTGSYL.\n*\n*  INFO    (output) INTEGER\n*          On exit, if INFO is set to\n*            =0: Successful exit\n*            <0: If INFO = -i, input argument number i is illegal.\n*            >0: The matrix pairs (A, D) and (B, E) have common or very\n*                close eigenvalues.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n*     Umea University, S-901 87 Umea, Sweden.\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  scale, info, c, f, rdsum, rdscal = NumRu::Lapack.ztgsy2( trans, ijob, a, b, c, d, e, f, rdsum, rdscal, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 10 && argc != 10)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 10)", argc);
  rblapack_trans = argv[0];
  rblapack_ijob = argv[1];
  rblapack_a = argv[2];
  rblapack_b = argv[3];
  rblapack_c = argv[4];
  rblapack_d = argv[5];
  rblapack_e = argv[6];
  rblapack_f = argv[7];
  rblapack_rdsum = argv[8];
  rblapack_rdscal = argv[9];
  if (argc == 10) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  trans = StringValueCStr(rblapack_trans)[0];
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  m = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (5th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 2)
    rb_raise(rb_eArgError, "rank of c (5th argument) must be %d", 2);
  ldc = NA_SHAPE0(rblapack_c);
  n = NA_SHAPE1(rblapack_c);
  if (NA_TYPE(rblapack_c) != NA_DCOMPLEX)
    rblapack_c = na_change_type(rblapack_c, NA_DCOMPLEX);
  c = NA_PTR_TYPE(rblapack_c, doublecomplex*);
  if (!NA_IsNArray(rblapack_e))
    rb_raise(rb_eArgError, "e (7th argument) must be NArray");
  if (NA_RANK(rblapack_e) != 2)
    rb_raise(rb_eArgError, "rank of e (7th argument) must be %d", 2);
  lde = NA_SHAPE0(rblapack_e);
  if (NA_SHAPE1(rblapack_e) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of e must be the same as shape 1 of c");
  if (NA_TYPE(rblapack_e) != NA_DCOMPLEX)
    rblapack_e = na_change_type(rblapack_e, NA_DCOMPLEX);
  e = NA_PTR_TYPE(rblapack_e, doublecomplex*);
  rdsum = NUM2DBL(rblapack_rdsum);
  ijob = NUM2INT(rblapack_ijob);
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (6th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 2)
    rb_raise(rb_eArgError, "rank of d (6th argument) must be %d", 2);
  ldd = NA_SHAPE0(rblapack_d);
  if (NA_SHAPE1(rblapack_d) != m)
    rb_raise(rb_eRuntimeError, "shape 1 of d must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_d) != NA_DCOMPLEX)
    rblapack_d = na_change_type(rblapack_d, NA_DCOMPLEX);
  d = NA_PTR_TYPE(rblapack_d, doublecomplex*);
  rdscal = NUM2DBL(rblapack_rdscal);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of c");
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  if (!NA_IsNArray(rblapack_f))
    rb_raise(rb_eArgError, "f (8th argument) must be NArray");
  if (NA_RANK(rblapack_f) != 2)
    rb_raise(rb_eArgError, "rank of f (8th argument) must be %d", 2);
  ldf = NA_SHAPE0(rblapack_f);
  if (NA_SHAPE1(rblapack_f) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of f must be the same as shape 1 of c");
  if (NA_TYPE(rblapack_f) != NA_DCOMPLEX)
    rblapack_f = na_change_type(rblapack_f, NA_DCOMPLEX);
  f = NA_PTR_TYPE(rblapack_f, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldc;
    shape[1] = n;
    rblapack_c_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  c_out__ = NA_PTR_TYPE(rblapack_c_out__, doublecomplex*);
  MEMCPY(c_out__, c, doublecomplex, NA_TOTAL(rblapack_c));
  rblapack_c = rblapack_c_out__;
  c = c_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldf;
    shape[1] = n;
    rblapack_f_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  f_out__ = NA_PTR_TYPE(rblapack_f_out__, doublecomplex*);
  MEMCPY(f_out__, f, doublecomplex, NA_TOTAL(rblapack_f));
  rblapack_f = rblapack_f_out__;
  f = f_out__;

  ztgsy2_(&trans, &ijob, &m, &n, a, &lda, b, &ldb, c, &ldc, d, &ldd, e, &lde, f, &ldf, &scale, &rdsum, &rdscal, &info);

  rblapack_scale = rb_float_new((double)scale);
  rblapack_info = INT2NUM(info);
  rblapack_rdsum = rb_float_new((double)rdsum);
  rblapack_rdscal = rb_float_new((double)rdscal);
  return rb_ary_new3(6, rblapack_scale, rblapack_info, rblapack_c, rblapack_f, rblapack_rdsum, rblapack_rdscal);
}

void
init_lapack_ztgsy2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "ztgsy2", rblapack_ztgsy2, -1);
}