1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
#include "rb_lapack.h"
extern VOID ztrexc_(char* compq, integer* n, doublecomplex* t, integer* ldt, doublecomplex* q, integer* ldq, integer* ifst, integer* ilst, integer* info);
static VALUE
rblapack_ztrexc(int argc, VALUE *argv, VALUE self){
VALUE rblapack_compq;
char compq;
VALUE rblapack_t;
doublecomplex *t;
VALUE rblapack_q;
doublecomplex *q;
VALUE rblapack_ifst;
integer ifst;
VALUE rblapack_ilst;
integer ilst;
VALUE rblapack_info;
integer info;
VALUE rblapack_t_out__;
doublecomplex *t_out__;
VALUE rblapack_q_out__;
doublecomplex *q_out__;
integer ldt;
integer n;
integer ldq;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, t, q = NumRu::Lapack.ztrexc( compq, t, q, ifst, ilst, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZTREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO )\n\n* Purpose\n* =======\n*\n* ZTREXC reorders the Schur factorization of a complex matrix\n* A = Q*T*Q**H, so that the diagonal element of T with row index IFST\n* is moved to row ILST.\n*\n* The Schur form T is reordered by a unitary similarity transformation\n* Z**H*T*Z, and optionally the matrix Q of Schur vectors is updated by\n* postmultplying it with Z.\n*\n\n* Arguments\n* =========\n*\n* COMPQ (input) CHARACTER*1\n* = 'V': update the matrix Q of Schur vectors;\n* = 'N': do not update Q.\n*\n* N (input) INTEGER\n* The order of the matrix T. N >= 0.\n*\n* T (input/output) COMPLEX*16 array, dimension (LDT,N)\n* On entry, the upper triangular matrix T.\n* On exit, the reordered upper triangular matrix.\n*\n* LDT (input) INTEGER\n* The leading dimension of the array T. LDT >= max(1,N).\n*\n* Q (input/output) COMPLEX*16 array, dimension (LDQ,N)\n* On entry, if COMPQ = 'V', the matrix Q of Schur vectors.\n* On exit, if COMPQ = 'V', Q has been postmultiplied by the\n* unitary transformation matrix Z which reorders T.\n* If COMPQ = 'N', Q is not referenced.\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q. LDQ >= max(1,N).\n*\n* IFST (input) INTEGER\n* ILST (input) INTEGER\n* Specify the reordering of the diagonal elements of T:\n* The element with row index IFST is moved to row ILST by a\n* sequence of transpositions between adjacent elements.\n* 1 <= IFST <= N; 1 <= ILST <= N.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL WANTQ\n INTEGER K, M1, M2, M3\n DOUBLE PRECISION CS\n COMPLEX*16 SN, T11, T22, TEMP\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL XERBLA, ZLARTG, ZROT\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC DCONJG, MAX\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, t, q = NumRu::Lapack.ztrexc( compq, t, q, ifst, ilst, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_compq = argv[0];
rblapack_t = argv[1];
rblapack_q = argv[2];
rblapack_ifst = argv[3];
rblapack_ilst = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
compq = StringValueCStr(rblapack_compq)[0];
if (!NA_IsNArray(rblapack_q))
rb_raise(rb_eArgError, "q (3th argument) must be NArray");
if (NA_RANK(rblapack_q) != 2)
rb_raise(rb_eArgError, "rank of q (3th argument) must be %d", 2);
ldq = NA_SHAPE0(rblapack_q);
n = NA_SHAPE1(rblapack_q);
if (NA_TYPE(rblapack_q) != NA_DCOMPLEX)
rblapack_q = na_change_type(rblapack_q, NA_DCOMPLEX);
q = NA_PTR_TYPE(rblapack_q, doublecomplex*);
ilst = NUM2INT(rblapack_ilst);
if (!NA_IsNArray(rblapack_t))
rb_raise(rb_eArgError, "t (2th argument) must be NArray");
if (NA_RANK(rblapack_t) != 2)
rb_raise(rb_eArgError, "rank of t (2th argument) must be %d", 2);
ldt = NA_SHAPE0(rblapack_t);
if (NA_SHAPE1(rblapack_t) != n)
rb_raise(rb_eRuntimeError, "shape 1 of t must be the same as shape 1 of q");
if (NA_TYPE(rblapack_t) != NA_DCOMPLEX)
rblapack_t = na_change_type(rblapack_t, NA_DCOMPLEX);
t = NA_PTR_TYPE(rblapack_t, doublecomplex*);
ifst = NUM2INT(rblapack_ifst);
{
na_shape_t shape[2];
shape[0] = ldt;
shape[1] = n;
rblapack_t_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
t_out__ = NA_PTR_TYPE(rblapack_t_out__, doublecomplex*);
MEMCPY(t_out__, t, doublecomplex, NA_TOTAL(rblapack_t));
rblapack_t = rblapack_t_out__;
t = t_out__;
{
na_shape_t shape[2];
shape[0] = ldq;
shape[1] = n;
rblapack_q_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
q_out__ = NA_PTR_TYPE(rblapack_q_out__, doublecomplex*);
MEMCPY(q_out__, q, doublecomplex, NA_TOTAL(rblapack_q));
rblapack_q = rblapack_q_out__;
q = q_out__;
ztrexc_(&compq, &n, t, &ldt, q, &ldq, &ifst, &ilst, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_info, rblapack_t, rblapack_q);
}
void
init_lapack_ztrexc(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ztrexc", rblapack_ztrexc, -1);
}
|