File: ztrrfs.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (123 lines) | stat: -rw-r--r-- 7,680 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include "rb_lapack.h"

extern VOID ztrrfs_(char* uplo, char* trans, char* diag, integer* n, integer* nrhs, doublecomplex* a, integer* lda, doublecomplex* b, integer* ldb, doublecomplex* x, integer* ldx, doublereal* ferr, doublereal* berr, doublecomplex* work, doublereal* rwork, integer* info);


static VALUE
rblapack_ztrrfs(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_diag;
  char diag; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_x;
  doublecomplex *x; 
  VALUE rblapack_ferr;
  doublereal *ferr; 
  VALUE rblapack_berr;
  doublereal *berr; 
  VALUE rblapack_info;
  integer info; 
  doublecomplex *work;
  doublereal *rwork;

  integer lda;
  integer n;
  integer ldb;
  integer nrhs;
  integer ldx;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  ferr, berr, info = NumRu::Lapack.ztrrfs( uplo, trans, diag, a, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZTRRFS provides error bounds and backward error estimates for the\n*  solution to a system of linear equations with a triangular\n*  coefficient matrix.\n*\n*  The solution matrix X must be computed by ZTRTRS or some other\n*  means before entering this routine.  ZTRRFS does not do iterative\n*  refinement because doing so cannot improve the backward error.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  A is upper triangular;\n*          = 'L':  A is lower triangular.\n*\n*  TRANS   (input) CHARACTER*1\n*          Specifies the form of the system of equations:\n*          = 'N':  A * X = B     (No transpose)\n*          = 'T':  A**T * X = B  (Transpose)\n*          = 'C':  A**H * X = B  (Conjugate transpose)\n*\n*  DIAG    (input) CHARACTER*1\n*          = 'N':  A is non-unit triangular;\n*          = 'U':  A is unit triangular.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrices B and X.  NRHS >= 0.\n*\n*  A       (input) COMPLEX*16 array, dimension (LDA,N)\n*          The triangular matrix A.  If UPLO = 'U', the leading N-by-N\n*          upper triangular part of the array A contains the upper\n*          triangular matrix, and the strictly lower triangular part of\n*          A is not referenced.  If UPLO = 'L', the leading N-by-N lower\n*          triangular part of the array A contains the lower triangular\n*          matrix, and the strictly upper triangular part of A is not\n*          referenced.  If DIAG = 'U', the diagonal elements of A are\n*          also not referenced and are assumed to be 1.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)\n*          The right hand side matrix B.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)\n*          The solution matrix X.\n*\n*  LDX     (input) INTEGER\n*          The leading dimension of the array X.  LDX >= max(1,N).\n*\n*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)\n*          The estimated forward error bound for each solution vector\n*          X(j) (the j-th column of the solution matrix X).\n*          If XTRUE is the true solution corresponding to X(j), FERR(j)\n*          is an estimated upper bound for the magnitude of the largest\n*          element in (X(j) - XTRUE) divided by the magnitude of the\n*          largest element in X(j).  The estimate is as reliable as\n*          the estimate for RCOND, and is almost always a slight\n*          overestimate of the true error.\n*\n*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)\n*          The componentwise relative backward error of each solution\n*          vector X(j) (i.e., the smallest relative change in\n*          any element of A or B that makes X(j) an exact solution).\n*\n*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)\n*\n*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  ferr, berr, info = NumRu::Lapack.ztrrfs( uplo, trans, diag, a, b, x, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 6 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
  rblapack_uplo = argv[0];
  rblapack_trans = argv[1];
  rblapack_diag = argv[2];
  rblapack_a = argv[3];
  rblapack_b = argv[4];
  rblapack_x = argv[5];
  if (argc == 6) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  diag = StringValueCStr(rblapack_diag)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (5th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  trans = StringValueCStr(rblapack_trans)[0];
  if (!NA_IsNArray(rblapack_x))
    rb_raise(rb_eArgError, "x (6th argument) must be NArray");
  if (NA_RANK(rblapack_x) != 2)
    rb_raise(rb_eArgError, "rank of x (6th argument) must be %d", 2);
  ldx = NA_SHAPE0(rblapack_x);
  if (NA_SHAPE1(rblapack_x) != nrhs)
    rb_raise(rb_eRuntimeError, "shape 1 of x must be the same as shape 1 of b");
  if (NA_TYPE(rblapack_x) != NA_DCOMPLEX)
    rblapack_x = na_change_type(rblapack_x, NA_DCOMPLEX);
  x = NA_PTR_TYPE(rblapack_x, doublecomplex*);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (4th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_ferr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  ferr = NA_PTR_TYPE(rblapack_ferr, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_berr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  berr = NA_PTR_TYPE(rblapack_berr, doublereal*);
  work = ALLOC_N(doublecomplex, (2*n));
  rwork = ALLOC_N(doublereal, (n));

  ztrrfs_(&uplo, &trans, &diag, &n, &nrhs, a, &lda, b, &ldb, x, &ldx, ferr, berr, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(3, rblapack_ferr, rblapack_berr, rblapack_info);
}

void
init_lapack_ztrrfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "ztrrfs", rblapack_ztrrfs, -1);
}