1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
#include "rb_lapack.h"
extern VOID ztzrqf_(integer* m, integer* n, doublecomplex* a, integer* lda, doublecomplex* tau, integer* info);
static VALUE
rblapack_ztzrqf(int argc, VALUE *argv, VALUE self){
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_tau;
doublecomplex *tau;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
doublecomplex *a_out__;
integer lda;
integer n;
integer m;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n tau, info, a = NumRu::Lapack.ztzrqf( a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )\n\n* Purpose\n* =======\n*\n* This routine is deprecated and has been replaced by routine ZTZRZF.\n*\n* ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A\n* to upper triangular form by means of unitary transformations.\n*\n* The upper trapezoidal matrix A is factored as\n*\n* A = ( R 0 ) * Z,\n*\n* where Z is an N-by-N unitary matrix and R is an M-by-M upper\n* triangular matrix.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= M.\n*\n* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n* On entry, the leading M-by-N upper trapezoidal part of the\n* array A must contain the matrix to be factorized.\n* On exit, the leading M-by-M upper triangular part of A\n* contains the upper triangular matrix R, and elements M+1 to\n* N of the first M rows of A, with the array TAU, represent the\n* unitary matrix Z as a product of M elementary reflectors.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* TAU (output) COMPLEX*16 array, dimension (M)\n* The scalar factors of the elementary reflectors.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* Further Details\n* ===============\n*\n* The factorization is obtained by Householder's method. The kth\n* transformation matrix, Z( k ), whose conjugate transpose is used to\n* introduce zeros into the (m - k + 1)th row of A, is given in the form\n*\n* Z( k ) = ( I 0 ),\n* ( 0 T( k ) )\n*\n* where\n*\n* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),\n* ( 0 )\n* ( z( k ) )\n*\n* tau is a scalar and z( k ) is an ( n - m ) element vector.\n* tau and z( k ) are chosen to annihilate the elements of the kth row\n* of X.\n*\n* The scalar tau is returned in the kth element of TAU and the vector\n* u( k ) in the kth row of A, such that the elements of z( k ) are\n* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in\n* the upper triangular part of A.\n*\n* Z is given by\n*\n* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n tau, info, a = NumRu::Lapack.ztzrqf( a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 1 && argc != 1)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 1)", argc);
rblapack_a = argv[0];
if (argc == 1) {
} else if (rblapack_options != Qnil) {
} else {
}
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (1th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
m = lda;
{
na_shape_t shape[1];
shape[0] = m;
rblapack_tau = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
tau = NA_PTR_TYPE(rblapack_tau, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
ztzrqf_(&m, &n, a, &lda, tau, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_tau, rblapack_info, rblapack_a);
}
void
init_lapack_ztzrqf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ztzrqf", rblapack_ztzrqf, -1);
}
|