File: ztzrqf.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (83 lines) | stat: -rw-r--r-- 5,024 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include "rb_lapack.h"

extern VOID ztzrqf_(integer* m, integer* n, doublecomplex* a, integer* lda, doublecomplex* tau, integer* info);


static VALUE
rblapack_ztzrqf(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_tau;
  doublecomplex *tau; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;

  integer lda;
  integer n;
  integer m;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  tau, info, a = NumRu::Lapack.ztzrqf( a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )\n\n*  Purpose\n*  =======\n*\n*  This routine is deprecated and has been replaced by routine ZTZRZF.\n*\n*  ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A\n*  to upper triangular form by means of unitary transformations.\n*\n*  The upper trapezoidal matrix A is factored as\n*\n*     A = ( R  0 ) * Z,\n*\n*  where Z is an N-by-N unitary matrix and R is an M-by-M upper\n*  triangular matrix.\n*\n\n*  Arguments\n*  =========\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix A.  M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix A.  N >= M.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n*          On entry, the leading M-by-N upper trapezoidal part of the\n*          array A must contain the matrix to be factorized.\n*          On exit, the leading M-by-M upper triangular part of A\n*          contains the upper triangular matrix R, and elements M+1 to\n*          N of the first M rows of A, with the array TAU, represent the\n*          unitary matrix Z as a product of M elementary reflectors.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,M).\n*\n*  TAU     (output) COMPLEX*16 array, dimension (M)\n*          The scalar factors of the elementary reflectors.\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n*  Further Details\n*  ===============\n*\n*  The  factorization is obtained by Householder's method.  The kth\n*  transformation matrix, Z( k ), whose conjugate transpose is used to\n*  introduce zeros into the (m - k + 1)th row of A, is given in the form\n*\n*     Z( k ) = ( I     0   ),\n*              ( 0  T( k ) )\n*\n*  where\n*\n*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),\n*                                                 (   0    )\n*                                                 ( z( k ) )\n*\n*  tau is a scalar and z( k ) is an ( n - m ) element vector.\n*  tau and z( k ) are chosen to annihilate the elements of the kth row\n*  of X.\n*\n*  The scalar tau is returned in the kth element of TAU and the vector\n*  u( k ) in the kth row of A, such that the elements of z( k ) are\n*  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in\n*  the upper triangular part of A.\n*\n*  Z is given by\n*\n*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).\n*\n* =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  tau, info, a = NumRu::Lapack.ztzrqf( a, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 1 && argc != 1)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 1)", argc);
  rblapack_a = argv[0];
  if (argc == 1) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (1th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  m = lda;
  {
    na_shape_t shape[1];
    shape[0] = m;
    rblapack_tau = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  tau = NA_PTR_TYPE(rblapack_tau, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;

  ztzrqf_(&m, &n, a, &lda, tau, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(3, rblapack_tau, rblapack_info, rblapack_a);
}

void
init_lapack_ztzrqf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "ztzrqf", rblapack_ztzrqf, -1);
}