File: zunglq.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (107 lines) | stat: -rw-r--r-- 5,501 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#include "rb_lapack.h"

extern VOID zunglq_(integer* m, integer* n, integer* k, doublecomplex* a, integer* lda, doublecomplex* tau, doublecomplex* work, integer* lwork, integer* info);


static VALUE
rblapack_zunglq(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_tau;
  doublecomplex *tau; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;

  integer lda;
  integer n;
  integer k;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  work, info, a = NumRu::Lapack.zunglq( m, a, tau, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZUNGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZUNGLQ generates an M-by-N complex matrix Q with orthonormal rows,\n*  which is defined as the first M rows of a product of K elementary\n*  reflectors of order N\n*\n*        Q  =  H(k)' . . . H(2)' H(1)'\n*\n*  as returned by ZGELQF.\n*\n\n*  Arguments\n*  =========\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix Q. M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix Q. N >= M.\n*\n*  K       (input) INTEGER\n*          The number of elementary reflectors whose product defines the\n*          matrix Q. M >= K >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n*          On entry, the i-th row must contain the vector which defines\n*          the elementary reflector H(i), for i = 1,2,...,k, as returned\n*          by ZGELQF in the first k rows of its array argument A.\n*          On exit, the M-by-N matrix Q.\n*\n*  LDA     (input) INTEGER\n*          The first dimension of the array A. LDA >= max(1,M).\n*\n*  TAU     (input) COMPLEX*16 array, dimension (K)\n*          TAU(i) must contain the scalar factor of the elementary\n*          reflector H(i), as returned by ZGELQF.\n*\n*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK. LWORK >= max(1,M).\n*          For optimum performance LWORK >= M*NB, where NB is\n*          the optimal blocksize.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit;\n*          < 0:  if INFO = -i, the i-th argument has an illegal value\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  work, info, a = NumRu::Lapack.zunglq( m, a, tau, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_m = argv[0];
  rblapack_a = argv[1];
  rblapack_tau = argv[2];
  if (argc == 4) {
    rblapack_lwork = argv[3];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  m = NUM2INT(rblapack_m);
  if (!NA_IsNArray(rblapack_tau))
    rb_raise(rb_eArgError, "tau (3th argument) must be NArray");
  if (NA_RANK(rblapack_tau) != 1)
    rb_raise(rb_eArgError, "rank of tau (3th argument) must be %d", 1);
  k = NA_SHAPE0(rblapack_tau);
  if (NA_TYPE(rblapack_tau) != NA_DCOMPLEX)
    rblapack_tau = na_change_type(rblapack_tau, NA_DCOMPLEX);
  tau = NA_PTR_TYPE(rblapack_tau, doublecomplex*);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (2th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  if (rblapack_lwork == Qnil)
    lwork = m;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;

  zunglq_(&m, &n, &k, a, &lda, tau, work, &lwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(3, rblapack_work, rblapack_info, rblapack_a);
}

void
init_lapack_zunglq(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zunglq", rblapack_zunglq, -1);
}