1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
Support embedded SVG in LaTeX expressions.
TODO: The LaTeX output does not look correct here!
*** Parameters: ***
require 'maruku/ext/math'; {:html_math_engine => 'itex2mml'}
*** Markdown input: ***
In $SU(3)$, $\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="30" height="16" viewBox="0 0 30 16">
<desc>Rank-2 Symmetric Tensor Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
<rect width="10" height="10" x="10"/>
</g>
</svg>
\end{svg}\includegraphics[width=2em]{young1}
\otimes
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="16" viewBox="0 0 20 16">
<desc>Fundamental Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
</g>
</svg>
\end{svg}\includegraphics[width=1em]{young2}
=
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="30" height="26" viewBox="0 0 30 26">
<desc>Adjoint Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
<rect width="10" height="10" x="10"/>
<rect width="10" height="10" y="10"/>
</g>
</svg>
\end{svg}\includegraphics[width=2em]{young3}
\oplus
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="40" height="16" viewBox="0 0 40 16">
<desc>Rank-3 Symmetric Tensor Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
<rect width="10" height="10" x="10"/>
<rect width="10" height="10" x="20"/>
</g>
</svg>
\end{svg}\includegraphics[width=3em]{young4}$.
*** Output of inspect ***
md_el(:document,[
md_par(["In ",
md_el(:inline_math, [], {:math=>"SU(3)"}),
", ",
md_el(:inline_math, [], {:math=>"\\begin{svg}\n<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"30\" height=\"16\" viewBox=\"0 0 30 16\">\n <desc>Rank-2 Symmetric Tensor Representation</desc>\n <g transform=\"translate(5,5)\" fill=\"#FCC\" stroke=\"#000\" stroke-width=\"2\">\n <rect width=\"10\" height=\"10\"/>\n <rect width=\"10\" height=\"10\" x=\"10\"/>\n </g>\n</svg>\n\\end{svg}\\includegraphics[width=2em]{young1}\n \\otimes\n\\begin{svg}\n<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"20\" height=\"16\" viewBox=\"0 0 20 16\">\n <desc>Fundamental Representation</desc>\n <g transform=\"translate(5,5)\" fill=\"#FCC\" stroke=\"#000\" stroke-width=\"2\">\n <rect width=\"10\" height=\"10\"/>\n </g>\n</svg>\n\\end{svg}\\includegraphics[width=1em]{young2}\n =\n\\begin{svg}\n<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"30\" height=\"26\" viewBox=\"0 0 30 26\">\n <desc>Adjoint Representation</desc>\n <g transform=\"translate(5,5)\" fill=\"#FCC\" stroke=\"#000\" stroke-width=\"2\">\n <rect width=\"10\" height=\"10\"/>\n <rect width=\"10\" height=\"10\" x=\"10\"/>\n <rect width=\"10\" height=\"10\" y=\"10\"/>\n </g>\n</svg>\n\\end{svg}\\includegraphics[width=2em]{young3}\n \\oplus\n\\begin{svg}\n<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"40\" height=\"16\" viewBox=\"0 0 40 16\">\n <desc>Rank-3 Symmetric Tensor Representation</desc>\n <g transform=\"translate(5,5)\" fill=\"#FCC\" stroke=\"#000\" stroke-width=\"2\">\n <rect width=\"10\" height=\"10\"/>\n <rect width=\"10\" height=\"10\" x=\"10\"/>\n <rect width=\"10\" height=\"10\" x=\"20\"/>\n </g>\n</svg>\n\\end{svg}\\includegraphics[width=3em]{young4}"}),
"."
])
],{},[])
*** Output of to_html ***
<p>In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SU</mi><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">SU(3)</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><semantics><annotation-xml encoding="SVG1.1">
<svg xmlns="http://www.w3.org/2000/svg" width="30" height="16" viewBox="0 0 30 16">
<desc>Rank-2 Symmetric Tensor Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"></rect>
<rect width="10" height="10" x="10"></rect>
</g>
</svg>
</annotation-xml></semantics><mo>⊗</mo><semantics><annotation-xml encoding="SVG1.1">
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="16" viewBox="0 0 20 16">
<desc>Fundamental Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"></rect>
</g>
</svg>
</annotation-xml></semantics><mo>=</mo><semantics><annotation-xml encoding="SVG1.1">
<svg xmlns="http://www.w3.org/2000/svg" width="30" height="26" viewBox="0 0 30 26">
<desc>Adjoint Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"></rect>
<rect width="10" height="10" x="10"></rect>
<rect width="10" height="10" y="10"></rect>
</g>
</svg>
</annotation-xml></semantics><mo>⊕</mo><semantics><annotation-xml encoding="SVG1.1">
<svg xmlns="http://www.w3.org/2000/svg" width="40" height="16" viewBox="0 0 40 16">
<desc>Rank-3 Symmetric Tensor Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"></rect>
<rect width="10" height="10" x="10"></rect>
<rect width="10" height="10" x="20"></rect>
</g>
</svg>
</annotation-xml></semantics></mrow><annotation encoding="application/x-tex">\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="30" height="16" viewBox="0 0 30 16">
<desc>Rank-2 Symmetric Tensor Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
<rect width="10" height="10" x="10"/>
</g>
</svg>
\end{svg}\includegraphics[width=2em]{young1}
\otimes
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="16" viewBox="0 0 20 16">
<desc>Fundamental Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
</g>
</svg>
\end{svg}\includegraphics[width=1em]{young2}
=
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="30" height="26" viewBox="0 0 30 26">
<desc>Adjoint Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
<rect width="10" height="10" x="10"/>
<rect width="10" height="10" y="10"/>
</g>
</svg>
\end{svg}\includegraphics[width=2em]{young3}
\oplus
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="40" height="16" viewBox="0 0 40 16">
<desc>Rank-3 Symmetric Tensor Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
<rect width="10" height="10" x="10"/>
<rect width="10" height="10" x="20"/>
</g>
</svg>
\end{svg}\includegraphics[width=3em]{young4}</annotation></semantics></math>.</p>
*** Output of to_latex ***
In $SU(3)$, $ \includegraphics[width=2em]{young1}
\otimes
\includegraphics[width=1em]{young2}
=
\includegraphics[width=2em]{young3}
\oplus
\includegraphics[width=3em]{young4}$.
|