1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
// Copyright (c) 2011, 2021 Peter Ohler. All rights reserved.
// Licensed under the MIT License. See LICENSE file in the project root for license details.
#include "intern.h"
#include <stdint.h>
#if HAVE_PTHREAD_MUTEX_INIT
#include <pthread.h>
#endif
#include "cache.h"
#include "mem.h"
#include "parse.h"
// Only used for the class cache so 256 should be sufficient.
#define HASH_SLOT_CNT ((uint64_t)256)
#define HASH_MASK (HASH_SLOT_CNT - 1)
// almost the Murmur hash algorithm
#define M 0x5bd1e995
typedef struct _keyVal {
struct _keyVal *next;
const char *key;
size_t len;
VALUE val;
} *KeyVal;
typedef struct _hash {
struct _keyVal slots[HASH_SLOT_CNT];
#if HAVE_PTHREAD_MUTEX_INIT
pthread_mutex_t mutex;
#else
VALUE mutex;
#endif
} *Hash;
struct _hash class_hash;
struct _hash attr_hash;
static VALUE str_cache_obj;
static VALUE sym_cache_obj;
static VALUE attr_cache_obj;
static VALUE form_str(const char *str, size_t len) {
return rb_str_freeze(rb_utf8_str_new(str, len));
}
static VALUE form_sym(const char *str, size_t len) {
return rb_to_symbol(rb_str_intern(rb_utf8_str_new(str, len)));
}
static VALUE form_attr(const char *str, size_t len) {
char buf[256];
if (sizeof(buf) - 2 <= len) {
char *b = OJ_R_ALLOC_N(char, len + 2);
ID id;
if ('~' == *str) {
memcpy(b, str + 1, len - 1);
b[len - 1] = '\0';
len -= 2;
} else {
*b = '@';
memcpy(b + 1, str, len);
b[len + 1] = '\0';
}
id = rb_intern3(buf, len + 1, oj_utf8_encoding);
OJ_R_FREE(b);
return id;
}
if ('~' == *str) {
memcpy(buf, str + 1, len - 1);
buf[len - 1] = '\0';
len -= 2;
} else {
*buf = '@';
memcpy(buf + 1, str, len);
buf[len + 1] = '\0';
}
return (VALUE)rb_intern3(buf, len + 1, oj_utf8_encoding);
}
static const rb_data_type_t oj_cache_type = {
"Oj/cache",
{
cache_mark,
cache_free,
NULL,
},
0,
0,
};
void oj_hash_init(void) {
VALUE cache_class = rb_define_class_under(Oj, "Cache", rb_cObject);
rb_undef_alloc_func(cache_class);
struct _cache *str_cache = cache_create(0, form_str, true, true);
str_cache_obj = TypedData_Wrap_Struct(cache_class, &oj_cache_type, str_cache);
rb_gc_register_address(&str_cache_obj);
struct _cache *sym_cache = cache_create(0, form_sym, true, true);
sym_cache_obj = TypedData_Wrap_Struct(cache_class, &oj_cache_type, sym_cache);
rb_gc_register_address(&sym_cache_obj);
struct _cache *attr_cache = cache_create(0, form_attr, false, true);
attr_cache_obj = TypedData_Wrap_Struct(cache_class, &oj_cache_type, attr_cache);
rb_gc_register_address(&attr_cache_obj);
memset(class_hash.slots, 0, sizeof(class_hash.slots));
#if HAVE_PTHREAD_MUTEX_INIT
pthread_mutex_init(&class_hash.mutex, NULL);
#else
class_hash.mutex = rb_mutex_new();
rb_gc_register_address(&class_hash.mutex);
#endif
}
VALUE
oj_str_intern(const char *key, size_t len) {
// For huge cache sizes over half a million the rb_enc_interned_str
// performs slightly better but at more "normal" size of a several
// thousands the cache intern performs about 20% better.
#if HAVE_RB_ENC_INTERNED_STR && 0
return rb_enc_interned_str(key, len, rb_utf8_encoding());
#else
Cache c;
TypedData_Get_Struct(str_cache_obj, struct _cache, &oj_cache_type, c);
return cache_intern(c, key, len);
#endif
}
VALUE
oj_sym_intern(const char *key, size_t len) {
Cache c;
TypedData_Get_Struct(sym_cache_obj, struct _cache, &oj_cache_type, c);
return cache_intern(c, key, len);
}
ID oj_attr_intern(const char *key, size_t len) {
Cache c;
TypedData_Get_Struct(attr_cache_obj, struct _cache, &oj_cache_type, c);
return cache_intern(c, key, len);
}
static uint64_t hash_calc(const uint8_t *key, size_t len) {
const uint8_t *end = key + len;
const uint8_t *endless = key + (len & 0xFFFFFFFC);
uint64_t h = (uint64_t)len;
uint64_t k;
while (key < endless) {
k = (uint64_t)*key++;
k |= (uint64_t)*key++ << 8;
k |= (uint64_t)*key++ << 16;
k |= (uint64_t)*key++ << 24;
k *= M;
k ^= k >> 24;
h *= M;
h ^= k * M;
}
if (1 < end - key) {
uint16_t k16 = (uint16_t)*key++;
k16 |= (uint16_t)*key++ << 8;
h ^= k16 << 8;
}
if (key < end) {
h ^= *key;
}
h *= M;
h ^= h >> 13;
h *= M;
h ^= h >> 15;
return h;
}
static VALUE resolve_classname(VALUE mod, const char *classname, int auto_define) {
VALUE clas;
ID ci = rb_intern(classname);
if (rb_const_defined_at(mod, ci)) {
clas = rb_const_get_at(mod, ci);
} else if (auto_define) {
clas = rb_define_class_under(mod, classname, oj_bag_class);
} else {
clas = Qundef;
}
return clas;
}
static VALUE resolve_classpath(ParseInfo pi, const char *name, size_t len, int auto_define, VALUE error_class) {
char class_name[1024];
VALUE clas;
char *end = class_name + sizeof(class_name) - 1;
char *s;
const char *n = name;
size_t nlen = len;
clas = rb_cObject;
for (s = class_name; 0 < len; n++, len--) {
if (':' == *n) {
*s = '\0';
n++;
len--;
if (':' != *n) {
return Qundef;
}
if (Qundef == (clas = resolve_classname(clas, class_name, auto_define))) {
return Qundef;
}
s = class_name;
} else if (end <= s) {
return Qundef;
} else {
*s++ = *n;
}
}
*s = '\0';
if (Qundef == (clas = resolve_classname(clas, class_name, auto_define))) {
if (sizeof(class_name) <= nlen) {
nlen = sizeof(class_name) - 1;
}
strncpy(class_name, name, nlen);
class_name[nlen] = '\0';
oj_set_error_at(pi, error_class, __FILE__, __LINE__, "class '%s' is not defined", class_name);
if (Qnil != error_class) {
pi->err_class = error_class;
}
}
return clas;
}
VALUE oj_class_intern(const char *key, size_t len, bool safe, ParseInfo pi, int auto_define, VALUE error_class) {
uint64_t h = hash_calc((const uint8_t *)key, len) & HASH_MASK;
KeyVal bucket = class_hash.slots + h;
KeyVal b;
if (safe) {
#if HAVE_PTHREAD_MUTEX_INIT
pthread_mutex_lock(&class_hash.mutex);
#else
rb_mutex_lock(class_hash.mutex);
#endif
if (NULL != bucket->key) { // not the top slot
for (b = bucket; 0 != b; b = b->next) {
if (len == b->len && 0 == strncmp(b->key, key, len)) {
#if HAVE_PTHREAD_MUTEX_INIT
pthread_mutex_unlock(&class_hash.mutex);
#else
rb_mutex_unlock(class_hash.mutex);
#endif
return b->val;
}
bucket = b;
}
b = OJ_R_ALLOC(struct _keyVal);
b->next = NULL;
bucket->next = b;
bucket = b;
}
bucket->key = oj_strndup(key, len);
bucket->len = len;
bucket->val = resolve_classpath(pi, key, len, auto_define, error_class);
#if HAVE_PTHREAD_MUTEX_INIT
pthread_mutex_unlock(&class_hash.mutex);
#else
rb_mutex_unlock(class_hash.mutex);
#endif
} else {
if (NULL != bucket->key) {
for (b = bucket; 0 != b; b = b->next) {
if (len == b->len && 0 == strncmp(b->key, key, len)) {
return (ID)b->val;
}
bucket = b;
}
b = OJ_R_ALLOC(struct _keyVal);
b->next = NULL;
bucket->next = b;
bucket = b;
}
bucket->key = oj_strndup(key, len);
bucket->len = len;
bucket->val = resolve_classpath(pi, key, len, auto_define, error_class);
}
rb_gc_register_mark_object(bucket->val);
return bucket->val;
}
char *oj_strndup(const char *s, size_t len) {
char *d = OJ_R_ALLOC_N(char, len + 1);
memcpy(d, s, len);
d[len] = '\0';
return d;
}
/*
void intern_cleanup(void) {
cache_free(str_cache);
cache_free(sym_cache);
cache_free(attr_cache);
}
*/
|