1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/* hash_load.c
* Copyright (c) 2011, Peter Ohler
* All rights reserved.
*/
#include <errno.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ox.h"
#include "ruby.h"
#define MARK_INC 256
// The approach taken for the hash and has_no_attrs parsing is to push just
// the key on to the stack and then decide what to do on the way up/out.
static VALUE create_top(PInfo pi) {
volatile VALUE top = rb_hash_new();
helper_stack_push(&pi->helpers, 0, top, HashCode);
pi->obj = top;
return top;
}
static void mark_value(PInfo pi, VALUE val) {
if (NULL == pi->marked) {
pi->marked = ALLOC_N(VALUE, MARK_INC);
pi->mark_size = MARK_INC;
} else if (pi->mark_size <= pi->mark_cnt) {
pi->mark_size += MARK_INC;
REALLOC_N(pi->marked, VALUE, pi->mark_size);
}
pi->marked[pi->mark_cnt] = val;
pi->mark_cnt++;
}
static bool marked(PInfo pi, VALUE val) {
if (NULL != pi->marked) {
VALUE *vp = pi->marked + pi->mark_cnt - 1;
for (; pi->marked <= vp; vp--) {
if (val == *vp) {
return true;
}
}
}
return false;
}
static void unmark(PInfo pi, VALUE val) {
if (NULL != pi->marked) {
VALUE *vp = pi->marked + pi->mark_cnt - 1;
int i;
for (i = 0; pi->marked <= vp; vp--, i++) {
if (val == *vp) {
for (; 0 < i; i--, vp++) {
*vp = *(vp + 1);
}
pi->mark_cnt--;
break;
}
}
}
}
static void add_str(PInfo pi, VALUE s) {
Helper parent = helper_stack_peek(&pi->helpers);
volatile VALUE a;
if (0 != pi->options->rb_enc) {
rb_enc_associate(s, pi->options->rb_enc);
}
switch (parent->type) {
case NoCode:
parent->obj = s;
parent->type = StringCode;
break;
case ArrayCode: rb_ary_push(parent->obj, s); break;
default:
a = rb_ary_new();
rb_ary_push(a, parent->obj);
rb_ary_push(a, s);
parent->obj = a;
parent->type = ArrayCode;
break;
}
}
static void add_text(PInfo pi, char *text, int closed) {
VALUE s = rb_str_new2(text);
if (0 != pi->options->rb_enc) {
rb_enc_associate(s, pi->options->rb_enc);
}
add_str(pi, s);
}
static void add_cdata(PInfo pi, const char *text, size_t len) {
VALUE s = rb_str_new2(text);
if (0 != pi->options->rb_enc) {
rb_enc_associate(s, pi->options->rb_enc);
}
add_str(pi, s);
}
static void add_element(PInfo pi, const char *ename, Attr attrs, int hasChildren) {
VALUE s = rb_str_new2(ename);
if (0 != pi->options->rb_enc) {
rb_enc_associate(s, pi->options->rb_enc);
}
if (helper_stack_empty(&pi->helpers)) {
create_top(pi);
}
if (NULL != attrs && NULL != attrs->name) {
volatile VALUE h = rb_hash_new();
volatile VALUE key;
volatile VALUE val;
volatile VALUE a;
for (; 0 != attrs->name; attrs++) {
key = rb_str_new2(attrs->name);
if (0 != pi->options->rb_enc) {
rb_enc_associate(key, pi->options->rb_enc);
}
if (Qnil != pi->options->attr_key_mod) {
key = rb_funcall(pi->options->attr_key_mod, ox_call_id, 1, key);
} else if (Yes == pi->options->sym_keys) {
key = rb_id2sym(rb_intern_str(key));
}
val = rb_str_new2(attrs->value);
if (0 != pi->options->rb_enc) {
rb_enc_associate(val, pi->options->rb_enc);
}
rb_hash_aset(h, key, val);
}
a = rb_ary_new();
rb_ary_push(a, h);
mark_value(pi, a);
helper_stack_push(&pi->helpers, rb_intern_str(s), a, ArrayCode);
} else {
helper_stack_push(&pi->helpers, rb_intern_str(s), Qnil, NoCode);
}
}
static void add_element_no_attrs(PInfo pi, const char *ename, Attr attrs, int hasChildren) {
VALUE s = rb_str_new2(ename);
if (0 != pi->options->rb_enc) {
rb_enc_associate(s, pi->options->rb_enc);
}
if (helper_stack_empty(&pi->helpers)) {
create_top(pi);
}
helper_stack_push(&pi->helpers, rb_intern_str(s), Qnil, NoCode);
}
static int umark_hash_cb(VALUE key, VALUE value, VALUE x) {
unmark((PInfo)x, value);
return ST_CONTINUE;
}
static void end_element_core(PInfo pi, const char *ename, bool check_marked) {
Helper e = helper_stack_pop(&pi->helpers);
Helper parent = helper_stack_peek(&pi->helpers);
volatile VALUE pobj = parent->obj;
volatile VALUE found = Qundef;
volatile VALUE key;
volatile VALUE a;
if (NoCode == e->type) {
e->obj = Qnil;
}
if (Qnil != pi->options->element_key_mod) {
key = rb_funcall(pi->options->element_key_mod, ox_call_id, 1, rb_id2str(e->var));
} else if (Yes == pi->options->sym_keys) {
key = rb_id2sym(e->var);
} else {
key = rb_id2str(e->var);
}
// Make sure the parent is a Hash. If not set then make a Hash. If an
// Array or non-Hash then append to array or create and append.
switch (parent->type) {
case NoCode:
pobj = rb_hash_new();
parent->obj = pobj;
parent->type = HashCode;
break;
case ArrayCode:
pobj = rb_hash_new();
rb_ary_push(parent->obj, pobj);
break;
case HashCode: found = rb_hash_lookup2(parent->obj, key, Qundef); break;
default:
a = rb_ary_new();
rb_ary_push(a, parent->obj);
pobj = rb_hash_new();
rb_ary_push(a, pobj);
parent->obj = a;
parent->type = ArrayCode;
break;
}
if (Qundef == found) {
rb_hash_aset(pobj, key, e->obj);
} else if (RUBY_T_ARRAY == rb_type(found)) {
if (check_marked && marked(pi, found)) {
unmark(pi, found);
a = rb_ary_new();
rb_ary_push(a, found);
rb_ary_push(a, e->obj);
rb_hash_aset(pobj, key, a);
} else {
rb_ary_push(found, e->obj);
}
} else { // something there other than an array
if (check_marked && marked(pi, e->obj)) {
unmark(pi, e->obj);
}
a = rb_ary_new();
rb_ary_push(a, found);
rb_ary_push(a, e->obj);
rb_hash_aset(pobj, key, a);
}
if (check_marked && NULL != pi->marked && RUBY_T_HASH == rb_type(e->obj)) {
rb_hash_foreach(e->obj, umark_hash_cb, (VALUE)pi);
}
}
static void end_element(PInfo pi, const char *ename) {
end_element_core(pi, ename, true);
}
static void end_element_no_attrs(PInfo pi, const char *ename) {
end_element_core(pi, ename, false);
}
static void finish(PInfo pi) {
xfree(pi->marked);
}
static void set_encoding_from_instruct(PInfo pi, Attr attrs) {
for (; 0 != attrs->name; attrs++) {
if (0 == strcmp("encoding", attrs->name)) {
pi->options->rb_enc = rb_enc_find(attrs->value);
}
}
}
static void instruct(PInfo pi, const char *target, Attr attrs, const char *content) {
if (0 == strcmp("xml", target)) {
set_encoding_from_instruct(pi, attrs);
}
}
struct _parseCallbacks _ox_hash_callbacks = {
instruct,
NULL,
NULL,
NULL,
add_text,
add_element,
end_element,
finish,
};
ParseCallbacks ox_hash_callbacks = &_ox_hash_callbacks;
struct _parseCallbacks _ox_hash_cdata_callbacks = {
instruct,
NULL,
NULL,
add_cdata,
add_text,
add_element,
end_element,
finish,
};
ParseCallbacks ox_hash_cdata_callbacks = &_ox_hash_cdata_callbacks;
struct _parseCallbacks _ox_hash_no_attrs_callbacks = {
instruct,
NULL,
NULL,
NULL,
add_text,
add_element_no_attrs,
end_element_no_attrs,
NULL,
};
ParseCallbacks ox_hash_no_attrs_callbacks = &_ox_hash_no_attrs_callbacks;
struct _parseCallbacks _ox_hash_no_attrs_cdata_callbacks = {
instruct,
NULL,
NULL,
add_cdata,
add_text,
add_element_no_attrs,
end_element_no_attrs,
NULL,
};
ParseCallbacks ox_hash_no_attrs_cdata_callbacks = &_ox_hash_no_attrs_cdata_callbacks;
|