1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ----
// Author: Craig Silverstein
//
// This is just a very thin wrapper over densehashtable.h, just
// like sgi stl's stl_hash_map is a very thin wrapper over
// stl_hashtable. The major thing we define is operator[], because
// we have a concept of a data_type which stl_hashtable doesn't
// (it only has a key and a value).
//
// NOTE: this is exactly like sparse_hash_map.h, with the word
// "sparse" replaced by "dense", except for the addition of
// set_empty_key().
//
// YOU MUST CALL SET_EMPTY_KEY() IMMEDIATELY AFTER CONSTRUCTION.
//
// Otherwise your program will die in mysterious ways.
//
// In other respects, we adhere mostly to the STL semantics for
// hash-map. One important exception is that insert() invalidates
// iterators entirely. On the plus side, though, erase() doesn't
// invalidate iterators at all, or even change the ordering of elements.
//
// Here are a few "power user" tips:
//
// 1) set_deleted_key():
// If you want to use erase() you *must* call set_deleted_key(),
// in addition to set_empty_key(), after construction.
// The deleted and empty keys must differ.
//
// 2) resize(0):
// When an item is deleted, its memory isn't freed right
// away. This allows you to iterate over a hashtable,
// and call erase(), without invalidating the iterator.
// To force the memory to be freed, call resize(0).
// For tr1 compatibility, this can also be called as rehash(0).
//
// 3) min_load_factor(0.0)
// Setting the minimum load factor to 0.0 guarantees that
// the hash table will never shrink.
//
// Guide to what kind of hash_map to use:
// (1) dense_hash_map: fastest, uses the most memory
// (2) sparse_hash_map: slowest, uses the least memory
// (3) hash_map (STL): in the middle
// Typically I use sparse_hash_map when I care about space and/or when
// I need to save the hashtable on disk. I use hash_map otherwise. I
// don't personally use dense_hash_set ever; some people use it for
// small sets with lots of lookups.
//
// - dense_hash_map has, typically, a factor of 2 memory overhead (if your
// data takes up X bytes, the hash_map uses X more bytes in overhead).
// - sparse_hash_map has about 2 bits overhead per entry.
// - sparse_hash_map can be 3-7 times slower than the others for lookup and,
// especially, inserts. See time_hash_map.cc for details.
//
// See /usr/(local/)?doc/sparsehash-*/dense_hash_map.html
// for information about how to use this class.
#ifndef _DENSE_HASH_MAP_H_
#define _DENSE_HASH_MAP_H_
#include <google/sparsehash/sparseconfig.h>
#include <stdio.h> // for FILE * in read()/write()
#include <algorithm> // for the default template args
#include <functional> // for equal_to
#include <memory> // for alloc<>
#include <utility> // for pair<>
#include HASH_FUN_H // defined in config.h
#include <google/sparsehash/densehashtable.h>
_START_GOOGLE_NAMESPACE_
using STL_NAMESPACE::pair;
template <class Key, class T,
class HashFcn = SPARSEHASH_HASH<Key>, // defined in sparseconfig.h
class EqualKey = STL_NAMESPACE::equal_to<Key>,
class Alloc = STL_NAMESPACE::allocator<T> >
class dense_hash_map {
private:
// Apparently select1st is not stl-standard, so we define our own
struct SelectKey {
const Key& operator()(const pair<const Key, T>& p) const {
return p.first;
}
};
struct SetKey {
void operator()(pair<const Key, T>* value, const Key& new_key) const {
*const_cast<Key*>(&value->first) = new_key;
// It would be nice to clear the rest of value here as well, in
// case it's taking up a lot of memory. We do this by clearing
// the value. This assumes T has a zero-arg constructor!
value->second = T();
}
};
// The actual data
typedef dense_hashtable<pair<const Key, T>, Key, HashFcn,
SelectKey, SetKey, EqualKey, Alloc> ht;
ht rep;
public:
typedef typename ht::key_type key_type;
typedef T data_type;
typedef T mapped_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef Alloc allocator_type;
typedef typename ht::size_type size_type;
typedef typename ht::difference_type difference_type;
typedef typename ht::pointer pointer;
typedef typename ht::const_pointer const_pointer;
typedef typename ht::reference reference;
typedef typename ht::const_reference const_reference;
typedef typename ht::iterator iterator;
typedef typename ht::const_iterator const_iterator;
typedef typename ht::local_iterator local_iterator;
typedef typename ht::const_local_iterator const_local_iterator;
// Iterator functions
iterator begin() { return rep.begin(); }
iterator end() { return rep.end(); }
const_iterator begin() const { return rep.begin(); }
const_iterator end() const { return rep.end(); }
// These come from tr1's unordered_map. For us, a bucket has 0 or 1 elements.
local_iterator begin(size_type i) { return rep.begin(i); }
local_iterator end(size_type i) { return rep.end(i); }
const_local_iterator begin(size_type i) const { return rep.begin(i); }
const_local_iterator end(size_type i) const { return rep.end(i); }
// Accessor functions
// TODO(csilvers): implement Alloc get_allocator() const;
hasher hash_funct() const { return rep.hash_funct(); }
hasher hash_function() const { return hash_funct(); }
key_equal key_eq() const { return rep.key_eq(); }
// Constructors
explicit dense_hash_map(size_type expected_max_items_in_table = 0,
const hasher& hf = hasher(),
const key_equal& eql = key_equal())
: rep(expected_max_items_in_table, hf, eql) { }
template <class InputIterator>
dense_hash_map(InputIterator f, InputIterator l,
size_type expected_max_items_in_table = 0,
const hasher& hf = hasher(),
const key_equal& eql = key_equal())
: rep(expected_max_items_in_table, hf, eql) {
rep.insert(f, l);
}
// We use the default copy constructor
// We use the default operator=()
// We use the default destructor
void clear() { rep.clear(); }
// This clears the hash map without resizing it down to the minimum
// bucket count, but rather keeps the number of buckets constant
void clear_no_resize() { rep.clear_no_resize(); }
void swap(dense_hash_map& hs) { rep.swap(hs.rep); }
// Functions concerning size
size_type size() const { return rep.size(); }
size_type max_size() const { return rep.max_size(); }
bool empty() const { return rep.empty(); }
size_type bucket_count() const { return rep.bucket_count(); }
size_type max_bucket_count() const { return rep.max_bucket_count(); }
// These are tr1 methods. bucket() is the bucket the key is or would be in.
size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
size_type bucket(const key_type& key) const { return rep.bucket(key); }
float load_factor() const {
return size() * 1.0f / bucket_count();
}
float max_load_factor() const {
float shrink, grow;
rep.get_resizing_parameters(&shrink, &grow);
return grow;
}
void max_load_factor(float new_grow) {
float shrink, grow;
rep.get_resizing_parameters(&shrink, &grow);
rep.set_resizing_parameters(shrink, new_grow);
}
// These aren't tr1 methods but perhaps ought to be.
float min_load_factor() const {
float shrink, grow;
rep.get_resizing_parameters(&shrink, &grow);
return shrink;
}
void min_load_factor(float new_shrink) {
float shrink, grow;
rep.get_resizing_parameters(&shrink, &grow);
rep.set_resizing_parameters(new_shrink, grow);
}
// Deprecated; use min_load_factor() or max_load_factor() instead.
void set_resizing_parameters(float shrink, float grow) {
return rep.set_resizing_parameters(shrink, grow);
}
void resize(size_type hint) { rep.resize(hint); }
void rehash(size_type hint) { resize(hint); } // the tr1 name
// Lookup routines
iterator find(const key_type& key) { return rep.find(key); }
const_iterator find(const key_type& key) const { return rep.find(key); }
data_type& operator[](const key_type& key) { // This is our value-add!
iterator it = find(key);
if (it != end()) {
return it->second;
} else {
return insert(value_type(key, data_type())).first->second;
}
}
size_type count(const key_type& key) const { return rep.count(key); }
pair<iterator, iterator> equal_range(const key_type& key) {
return rep.equal_range(key);
}
pair<const_iterator, const_iterator> equal_range(const key_type& key) const {
return rep.equal_range(key);
}
// Insertion routines
pair<iterator, bool> insert(const value_type& obj) { return rep.insert(obj); }
template <class InputIterator>
void insert(InputIterator f, InputIterator l) { rep.insert(f, l); }
void insert(const_iterator f, const_iterator l) { rep.insert(f, l); }
// required for std::insert_iterator; the passed-in iterator is ignored
iterator insert(iterator, const value_type& obj) { return insert(obj).first; }
// Deletion and empty routines
// THESE ARE NON-STANDARD! I make you specify an "impossible" key
// value to identify deleted and empty buckets. You can change the
// deleted key as time goes on, or get rid of it entirely to be insert-only.
void set_empty_key(const key_type& key) { // YOU MUST CALL THIS!
rep.set_empty_key(value_type(key, data_type())); // rep wants a value
}
void set_deleted_key(const key_type& key) {
rep.set_deleted_key(key);
}
void clear_deleted_key() { rep.clear_deleted_key(); }
// These are standard
size_type erase(const key_type& key) { return rep.erase(key); }
void erase(iterator it) { rep.erase(it); }
void erase(iterator f, iterator l) { rep.erase(f, l); }
// Comparison
bool operator==(const dense_hash_map& hs) const { return rep == hs.rep; }
bool operator!=(const dense_hash_map& hs) const { return rep != hs.rep; }
// I/O -- this is an add-on for writing metainformation to disk
bool write_metadata(FILE *fp) { return rep.write_metadata(fp); }
bool read_metadata(FILE *fp) { return rep.read_metadata(fp); }
bool write_nopointer_data(FILE *fp) { return rep.write_nopointer_data(fp); }
bool read_nopointer_data(FILE *fp) { return rep.read_nopointer_data(fp); }
};
// We need a global swap as well
template <class Key, class T, class HashFcn, class EqualKey, class Alloc>
inline void swap(dense_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm1,
dense_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm2) {
hm1.swap(hm2);
}
_END_GOOGLE_NAMESPACE_
#endif /* _DENSE_HASH_MAP_H_ */
|