File: src_backend_catalog_namespace.c

package info (click to toggle)
ruby-pg-query 5.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 18,248 kB
  • sloc: ansic: 149,767; ruby: 865; makefile: 3
file content (1068 lines) | stat: -rw-r--r-- 33,880 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
/*--------------------------------------------------------------------
 * Symbols referenced in this file:
 * - NameListToString
 * - get_collation_oid
 *--------------------------------------------------------------------
 */

/*-------------------------------------------------------------------------
 *
 * namespace.c
 *	  code to support accessing and searching namespaces
 *
 * This is separate from pg_namespace.c, which contains the routines that
 * directly manipulate the pg_namespace system catalog.  This module
 * provides routines associated with defining a "namespace search path"
 * and implementing search-path-controlled searches.
 *
 *
 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/catalog/namespace.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/htup_details.h"
#include "access/parallel.h"
#include "access/xact.h"
#include "access/xlog.h"
#include "catalog/dependency.h"
#include "catalog/objectaccess.h"
#include "catalog/pg_authid.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_conversion.h"
#include "catalog/pg_database.h"
#include "catalog/pg_namespace.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_opfamily.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_statistic_ext.h"
#include "catalog/pg_ts_config.h"
#include "catalog/pg_ts_dict.h"
#include "catalog/pg_ts_parser.h"
#include "catalog/pg_ts_template.h"
#include "catalog/pg_type.h"
#include "commands/dbcommands.h"
#include "funcapi.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "parser/parse_func.h"
#include "storage/ipc.h"
#include "storage/lmgr.h"
#include "storage/sinvaladt.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/catcache.h"
#include "utils/guc_hooks.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
#include "utils/varlena.h"


/*
 * The namespace search path is a possibly-empty list of namespace OIDs.
 * In addition to the explicit list, implicitly-searched namespaces
 * may be included:
 *
 * 1. If a TEMP table namespace has been initialized in this session, it
 * is implicitly searched first.  (The only time this doesn't happen is
 * when we are obeying an override search path spec that says not to use the
 * temp namespace, or the temp namespace is included in the explicit list.)
 *
 * 2. The system catalog namespace is always searched.  If the system
 * namespace is present in the explicit path then it will be searched in
 * the specified order; otherwise it will be searched after TEMP tables and
 * *before* the explicit list.  (It might seem that the system namespace
 * should be implicitly last, but this behavior appears to be required by
 * SQL99.  Also, this provides a way to search the system namespace first
 * without thereby making it the default creation target namespace.)
 *
 * For security reasons, searches using the search path will ignore the temp
 * namespace when searching for any object type other than relations and
 * types.  (We must allow types since temp tables have rowtypes.)
 *
 * The default creation target namespace is always the first element of the
 * explicit list.  If the explicit list is empty, there is no default target.
 *
 * The textual specification of search_path can include "$user" to refer to
 * the namespace named the same as the current user, if any.  (This is just
 * ignored if there is no such namespace.)	Also, it can include "pg_temp"
 * to refer to the current backend's temp namespace.  This is usually also
 * ignorable if the temp namespace hasn't been set up, but there's a special
 * case: if "pg_temp" appears first then it should be the default creation
 * target.  We kluge this case a little bit so that the temp namespace isn't
 * set up until the first attempt to create something in it.  (The reason for
 * klugery is that we can't create the temp namespace outside a transaction,
 * but initial GUC processing of search_path happens outside a transaction.)
 * activeTempCreationPending is true if "pg_temp" appears first in the string
 * but is not reflected in activeCreationNamespace because the namespace isn't
 * set up yet.
 *
 * In bootstrap mode, the search path is set equal to "pg_catalog", so that
 * the system namespace is the only one searched or inserted into.
 * initdb is also careful to set search_path to "pg_catalog" for its
 * post-bootstrap standalone backend runs.  Otherwise the default search
 * path is determined by GUC.  The factory default path contains the PUBLIC
 * namespace (if it exists), preceded by the user's personal namespace
 * (if one exists).
 *
 * We support a stack of "override" search path settings for use within
 * specific sections of backend code.  namespace_search_path is ignored
 * whenever the override stack is nonempty.  activeSearchPath is always
 * the actually active path; it points either to the search list of the
 * topmost stack entry, or to baseSearchPath which is the list derived
 * from namespace_search_path.
 *
 * If baseSearchPathValid is false, then baseSearchPath (and other
 * derived variables) need to be recomputed from namespace_search_path.
 * We mark it invalid upon an assignment to namespace_search_path or receipt
 * of a syscache invalidation event for pg_namespace.  The recomputation
 * is done during the next non-overridden lookup attempt.  Note that an
 * override spec is never subject to recomputation.
 *
 * Any namespaces mentioned in namespace_search_path that are not readable
 * by the current user ID are simply left out of baseSearchPath; so
 * we have to be willing to recompute the path when current userid changes.
 * namespaceUser is the userid the path has been computed for.
 *
 * Note: all data pointed to by these List variables is in TopMemoryContext.
 *
 * activePathGeneration is incremented whenever the effective values of
 * activeSearchPath/activeCreationNamespace/activeTempCreationPending change.
 * This can be used to quickly detect whether any change has happened since
 * a previous examination of the search path state.
 */

/* These variables define the actually active state: */



/* default place to create stuff; if InvalidOid, no default */


/* if true, activeCreationNamespace is wrong, it should be temp namespace */


/* current generation counter; make sure this is never zero */


/* These variables are the values last derived from namespace_search_path: */









/* The above four values are valid only if baseSearchPathValid */


/* Override requests are remembered in a stack of OverrideStackEntry structs */

typedef struct
{
	List	   *searchPath;		/* the desired search path */
	Oid			creationNamespace;	/* the desired creation namespace */
	int			nestLevel;		/* subtransaction nesting level */
} OverrideStackEntry;



/*
 * myTempNamespace is InvalidOid until and unless a TEMP namespace is set up
 * in a particular backend session (this happens when a CREATE TEMP TABLE
 * command is first executed).  Thereafter it's the OID of the temp namespace.
 *
 * myTempToastNamespace is the OID of the namespace for my temp tables' toast
 * tables.  It is set when myTempNamespace is, and is InvalidOid before that.
 *
 * myTempNamespaceSubID shows whether we've created the TEMP namespace in the
 * current subtransaction.  The flag propagates up the subtransaction tree,
 * so the main transaction will correctly recognize the flag if all
 * intermediate subtransactions commit.  When it is InvalidSubTransactionId,
 * we either haven't made the TEMP namespace yet, or have successfully
 * committed its creation, depending on whether myTempNamespace is valid.
 */






/*
 * This is the user's textual search path specification --- it's the value
 * of the GUC variable 'search_path'.
 */



/* Local functions */
static void recomputeNamespacePath(void);
static void AccessTempTableNamespace(bool force);
static void InitTempTableNamespace(void);
static void RemoveTempRelations(Oid tempNamespaceId);
static void RemoveTempRelationsCallback(int code, Datum arg);
static void NamespaceCallback(Datum arg, int cacheid, uint32 hashvalue);
static bool MatchNamedCall(HeapTuple proctup, int nargs, List *argnames,
						   bool include_out_arguments, int pronargs,
						   int **argnumbers);


/*
 * RangeVarGetRelidExtended
 *		Given a RangeVar describing an existing relation,
 *		select the proper namespace and look up the relation OID.
 *
 * If the schema or relation is not found, return InvalidOid if flags contains
 * RVR_MISSING_OK, otherwise raise an error.
 *
 * If flags contains RVR_NOWAIT, throw an error if we'd have to wait for a
 * lock.
 *
 * If flags contains RVR_SKIP_LOCKED, return InvalidOid if we'd have to wait
 * for a lock.
 *
 * flags cannot contain both RVR_NOWAIT and RVR_SKIP_LOCKED.
 *
 * Note that if RVR_MISSING_OK and RVR_SKIP_LOCKED are both specified, a
 * return value of InvalidOid could either mean the relation is missing or it
 * could not be locked.
 *
 * Callback allows caller to check permissions or acquire additional locks
 * prior to grabbing the relation lock.
 */


/*
 * RangeVarGetCreationNamespace
 *		Given a RangeVar describing a to-be-created relation,
 *		choose which namespace to create it in.
 *
 * Note: calling this may result in a CommandCounterIncrement operation.
 * That will happen on the first request for a temp table in any particular
 * backend run; we will need to either create or clean out the temp schema.
 */


/*
 * RangeVarGetAndCheckCreationNamespace
 *
 * This function returns the OID of the namespace in which a new relation
 * with a given name should be created.  If the user does not have CREATE
 * permission on the target namespace, this function will instead signal
 * an ERROR.
 *
 * If non-NULL, *existing_relation_id is set to the OID of any existing relation
 * with the same name which already exists in that namespace, or to InvalidOid
 * if no such relation exists.
 *
 * If lockmode != NoLock, the specified lock mode is acquired on the existing
 * relation, if any, provided that the current user owns the target relation.
 * However, if lockmode != NoLock and the user does not own the target
 * relation, we throw an ERROR, as we must not try to lock relations the
 * user does not have permissions on.
 *
 * As a side effect, this function acquires AccessShareLock on the target
 * namespace.  Without this, the namespace could be dropped before our
 * transaction commits, leaving behind relations with relnamespace pointing
 * to a no-longer-existent namespace.
 *
 * As a further side-effect, if the selected namespace is a temporary namespace,
 * we mark the RangeVar as RELPERSISTENCE_TEMP.
 */


/*
 * Adjust the relpersistence for an about-to-be-created relation based on the
 * creation namespace, and throw an error for invalid combinations.
 */


/*
 * RelnameGetRelid
 *		Try to resolve an unqualified relation name.
 *		Returns OID if relation found in search path, else InvalidOid.
 */



/*
 * RelationIsVisible
 *		Determine whether a relation (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified relation name".
 */



/*
 * TypenameGetTypid
 *		Wrapper for binary compatibility.
 */


/*
 * TypenameGetTypidExtended
 *		Try to resolve an unqualified datatype name.
 *		Returns OID if type found in search path, else InvalidOid.
 *
 * This is essentially the same as RelnameGetRelid.
 */


/*
 * TypeIsVisible
 *		Determine whether a type (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified type name".
 */



/*
 * FuncnameGetCandidates
 *		Given a possibly-qualified function name and argument count,
 *		retrieve a list of the possible matches.
 *
 * If nargs is -1, we return all functions matching the given name,
 * regardless of argument count.  (argnames must be NIL, and expand_variadic
 * and expand_defaults must be false, in this case.)
 *
 * If argnames isn't NIL, we are considering a named- or mixed-notation call,
 * and only functions having all the listed argument names will be returned.
 * (We assume that length(argnames) <= nargs and all the passed-in names are
 * distinct.)  The returned structs will include an argnumbers array showing
 * the actual argument index for each logical argument position.
 *
 * If expand_variadic is true, then variadic functions having the same number
 * or fewer arguments will be retrieved, with the variadic argument and any
 * additional argument positions filled with the variadic element type.
 * nvargs in the returned struct is set to the number of such arguments.
 * If expand_variadic is false, variadic arguments are not treated specially,
 * and the returned nvargs will always be zero.
 *
 * If expand_defaults is true, functions that could match after insertion of
 * default argument values will also be retrieved.  In this case the returned
 * structs could have nargs > passed-in nargs, and ndargs is set to the number
 * of additional args (which can be retrieved from the function's
 * proargdefaults entry).
 *
 * If include_out_arguments is true, then OUT-mode arguments are considered to
 * be included in the argument list.  Their types are included in the returned
 * arrays, and argnumbers are indexes in proallargtypes not proargtypes.
 * We also set nominalnargs to be the length of proallargtypes not proargtypes.
 * Otherwise OUT-mode arguments are ignored.
 *
 * It is not possible for nvargs and ndargs to both be nonzero in the same
 * list entry, since default insertion allows matches to functions with more
 * than nargs arguments while the variadic transformation requires the same
 * number or less.
 *
 * When argnames isn't NIL, the returned args[] type arrays are not ordered
 * according to the functions' declarations, but rather according to the call:
 * first any positional arguments, then the named arguments, then defaulted
 * arguments (if needed and allowed by expand_defaults).  The argnumbers[]
 * array can be used to map this back to the catalog information.
 * argnumbers[k] is set to the proargtypes or proallargtypes index of the
 * k'th call argument.
 *
 * We search a single namespace if the function name is qualified, else
 * all namespaces in the search path.  In the multiple-namespace case,
 * we arrange for entries in earlier namespaces to mask identical entries in
 * later namespaces.
 *
 * When expanding variadics, we arrange for non-variadic functions to mask
 * variadic ones if the expanded argument list is the same.  It is still
 * possible for there to be conflicts between different variadic functions,
 * however.
 *
 * It is guaranteed that the return list will never contain multiple entries
 * with identical argument lists.  When expand_defaults is true, the entries
 * could have more than nargs positions, but we still guarantee that they are
 * distinct in the first nargs positions.  However, if argnames isn't NIL or
 * either expand_variadic or expand_defaults is true, there might be multiple
 * candidate functions that expand to identical argument lists.  Rather than
 * throw error here, we report such situations by returning a single entry
 * with oid = 0 that represents a set of such conflicting candidates.
 * The caller might end up discarding such an entry anyway, but if it selects
 * such an entry it should react as though the call were ambiguous.
 *
 * If missing_ok is true, an empty list (NULL) is returned if the name was
 * schema-qualified with a schema that does not exist.  Likewise if no
 * candidate is found for other reasons.
 */


/*
 * MatchNamedCall
 *		Given a pg_proc heap tuple and a call's list of argument names,
 *		check whether the function could match the call.
 *
 * The call could match if all supplied argument names are accepted by
 * the function, in positions after the last positional argument, and there
 * are defaults for all unsupplied arguments.
 *
 * If include_out_arguments is true, we are treating OUT arguments as
 * included in the argument list.  pronargs is the number of arguments
 * we're considering (the length of either proargtypes or proallargtypes).
 *
 * The number of positional arguments is nargs - list_length(argnames).
 * Note caller has already done basic checks on argument count.
 *
 * On match, return true and fill *argnumbers with a palloc'd array showing
 * the mapping from call argument positions to actual function argument
 * numbers.  Defaulted arguments are included in this map, at positions
 * after the last supplied argument.
 */


/*
 * FunctionIsVisible
 *		Determine whether a function (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified function name with exact argument matches".
 */



/*
 * OpernameGetOprid
 *		Given a possibly-qualified operator name and exact input datatypes,
 *		look up the operator.  Returns InvalidOid if not found.
 *
 * Pass oprleft = InvalidOid for a prefix op.
 *
 * If the operator name is not schema-qualified, it is sought in the current
 * namespace search path.  If the name is schema-qualified and the given
 * schema does not exist, InvalidOid is returned.
 */


/*
 * OpernameGetCandidates
 *		Given a possibly-qualified operator name and operator kind,
 *		retrieve a list of the possible matches.
 *
 * If oprkind is '\0', we return all operators matching the given name,
 * regardless of arguments.
 *
 * We search a single namespace if the operator name is qualified, else
 * all namespaces in the search path.  The return list will never contain
 * multiple entries with identical argument lists --- in the multiple-
 * namespace case, we arrange for entries in earlier namespaces to mask
 * identical entries in later namespaces.
 *
 * The returned items always have two args[] entries --- the first will be
 * InvalidOid for a prefix oprkind.  nargs is always 2, too.
 */
#define SPACE_PER_OP MAXALIGN(offsetof(struct _FuncCandidateList, args) + \
							  2 * sizeof(Oid))

/*
 * OperatorIsVisible
 *		Determine whether an operator (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified operator name with exact argument matches".
 */



/*
 * OpclassnameGetOpcid
 *		Try to resolve an unqualified index opclass name.
 *		Returns OID if opclass found in search path, else InvalidOid.
 *
 * This is essentially the same as TypenameGetTypid, but we have to have
 * an extra argument for the index AM OID.
 */


/*
 * OpclassIsVisible
 *		Determine whether an opclass (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified opclass name".
 */


/*
 * OpfamilynameGetOpfid
 *		Try to resolve an unqualified index opfamily name.
 *		Returns OID if opfamily found in search path, else InvalidOid.
 *
 * This is essentially the same as TypenameGetTypid, but we have to have
 * an extra argument for the index AM OID.
 */


/*
 * OpfamilyIsVisible
 *		Determine whether an opfamily (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified opfamily name".
 */


/*
 * lookup_collation
 *		If there's a collation of the given name/namespace, and it works
 *		with the given encoding, return its OID.  Else return InvalidOid.
 */


/*
 * CollationGetCollid
 *		Try to resolve an unqualified collation name.
 *		Returns OID if collation found in search path, else InvalidOid.
 *
 * Note that this will only find collations that work with the current
 * database's encoding.
 */


/*
 * CollationIsVisible
 *		Determine whether a collation (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified collation name".
 *
 * Note that only collations that work with the current database's encoding
 * will be considered visible.
 */



/*
 * ConversionGetConid
 *		Try to resolve an unqualified conversion name.
 *		Returns OID if conversion found in search path, else InvalidOid.
 *
 * This is essentially the same as RelnameGetRelid.
 */


/*
 * ConversionIsVisible
 *		Determine whether a conversion (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified conversion name".
 */


/*
 * get_statistics_object_oid - find a statistics object by possibly qualified name
 *
 * If not found, returns InvalidOid if missing_ok, else throws error
 */


/*
 * StatisticsObjIsVisible
 *		Determine whether a statistics object (identified by OID) is visible in
 *		the current search path.  Visible means "would be found by searching
 *		for the unqualified statistics object name".
 */


/*
 * get_ts_parser_oid - find a TS parser by possibly qualified name
 *
 * If not found, returns InvalidOid if missing_ok, else throws error
 */


/*
 * TSParserIsVisible
 *		Determine whether a parser (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified parser name".
 */


/*
 * get_ts_dict_oid - find a TS dictionary by possibly qualified name
 *
 * If not found, returns InvalidOid if missing_ok, else throws error
 */


/*
 * TSDictionaryIsVisible
 *		Determine whether a dictionary (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified dictionary name".
 */


/*
 * get_ts_template_oid - find a TS template by possibly qualified name
 *
 * If not found, returns InvalidOid if missing_ok, else throws error
 */


/*
 * TSTemplateIsVisible
 *		Determine whether a template (identified by OID) is visible in the
 *		current search path.  Visible means "would be found by searching
 *		for the unqualified template name".
 */


/*
 * get_ts_config_oid - find a TS config by possibly qualified name
 *
 * If not found, returns InvalidOid if missing_ok, else throws error
 */


/*
 * TSConfigIsVisible
 *		Determine whether a text search configuration (identified by OID)
 *		is visible in the current search path.  Visible means "would be found
 *		by searching for the unqualified text search configuration name".
 */



/*
 * DeconstructQualifiedName
 *		Given a possibly-qualified name expressed as a list of String nodes,
 *		extract the schema name and object name.
 *
 * *nspname_p is set to NULL if there is no explicit schema name.
 */


/*
 * LookupNamespaceNoError
 *		Look up a schema name.
 *
 * Returns the namespace OID, or InvalidOid if not found.
 *
 * Note this does NOT perform any permissions check --- callers are
 * responsible for being sure that an appropriate check is made.
 * In the majority of cases LookupExplicitNamespace is preferable.
 */


/*
 * LookupExplicitNamespace
 *		Process an explicitly-specified schema name: look up the schema
 *		and verify we have USAGE (lookup) rights in it.
 *
 * Returns the namespace OID
 */


/*
 * LookupCreationNamespace
 *		Look up the schema and verify we have CREATE rights on it.
 *
 * This is just like LookupExplicitNamespace except for the different
 * permission check, and that we are willing to create pg_temp if needed.
 *
 * Note: calling this may result in a CommandCounterIncrement operation,
 * if we have to create or clean out the temp namespace.
 */


/*
 * Common checks on switching namespaces.
 *
 * We complain if either the old or new namespaces is a temporary schema
 * (or temporary toast schema), or if either the old or new namespaces is the
 * TOAST schema.
 */


/*
 * QualifiedNameGetCreationNamespace
 *		Given a possibly-qualified name for an object (in List-of-Strings
 *		format), determine what namespace the object should be created in.
 *		Also extract and return the object name (last component of list).
 *
 * Note: this does not apply any permissions check.  Callers must check
 * for CREATE rights on the selected namespace when appropriate.
 *
 * Note: calling this may result in a CommandCounterIncrement operation,
 * if we have to create or clean out the temp namespace.
 */


/*
 * get_namespace_oid - given a namespace name, look up the OID
 *
 * If missing_ok is false, throw an error if namespace name not found.  If
 * true, just return InvalidOid.
 */


/*
 * makeRangeVarFromNameList
 *		Utility routine to convert a qualified-name list into RangeVar form.
 */


/*
 * NameListToString
 *		Utility routine to convert a qualified-name list into a string.
 *
 * This is used primarily to form error messages, and so we do not quote
 * the list elements, for the sake of legibility.
 *
 * In most scenarios the list elements should always be String values,
 * but we also allow A_Star for the convenience of ColumnRef processing.
 */
char *
NameListToString(List *names)
{
	StringInfoData string;
	ListCell   *l;

	initStringInfo(&string);

	foreach(l, names)
	{
		Node	   *name = (Node *) lfirst(l);

		if (l != list_head(names))
			appendStringInfoChar(&string, '.');

		if (IsA(name, String))
			appendStringInfoString(&string, strVal(name));
		else if (IsA(name, A_Star))
			appendStringInfoChar(&string, '*');
		else
			elog(ERROR, "unexpected node type in name list: %d",
				 (int) nodeTag(name));
	}

	return string.data;
}

/*
 * NameListToQuotedString
 *		Utility routine to convert a qualified-name list into a string.
 *
 * Same as above except that names will be double-quoted where necessary,
 * so the string could be re-parsed (eg, by textToQualifiedNameList).
 */


/*
 * isTempNamespace - is the given namespace my temporary-table namespace?
 */


/*
 * isTempToastNamespace - is the given namespace my temporary-toast-table
 *		namespace?
 */


/*
 * isTempOrTempToastNamespace - is the given namespace my temporary-table
 *		namespace or my temporary-toast-table namespace?
 */


/*
 * isAnyTempNamespace - is the given namespace a temporary-table namespace
 * (either my own, or another backend's)?  Temporary-toast-table namespaces
 * are included, too.
 */


/*
 * isOtherTempNamespace - is the given namespace some other backend's
 * temporary-table namespace (including temporary-toast-table namespaces)?
 *
 * Note: for most purposes in the C code, this function is obsolete.  Use
 * RELATION_IS_OTHER_TEMP() instead to detect non-local temp relations.
 */


/*
 * checkTempNamespaceStatus - is the given namespace owned and actively used
 * by a backend?
 *
 * Note: this can be used while scanning relations in pg_class to detect
 * orphaned temporary tables or namespaces with a backend connected to a
 * given database.  The result may be out of date quickly, so the caller
 * must be careful how to handle this information.
 */


/*
 * GetTempNamespaceBackendId - if the given namespace is a temporary-table
 * namespace (either my own, or another backend's), return the BackendId
 * that owns it.  Temporary-toast-table namespaces are included, too.
 * If it isn't a temp namespace, return InvalidBackendId.
 */


/*
 * GetTempToastNamespace - get the OID of my temporary-toast-table namespace,
 * which must already be assigned.  (This is only used when creating a toast
 * table for a temp table, so we must have already done InitTempTableNamespace)
 */



/*
 * GetTempNamespaceState - fetch status of session's temporary namespace
 *
 * This is used for conveying state to a parallel worker, and is not meant
 * for general-purpose access.
 */


/*
 * SetTempNamespaceState - set status of session's temporary namespace
 *
 * This is used for conveying state to a parallel worker, and is not meant for
 * general-purpose access.  By transferring these namespace OIDs to workers,
 * we ensure they will have the same notion of the search path as their leader
 * does.
 */



/*
 * GetOverrideSearchPath - fetch current search path definition in form
 * used by PushOverrideSearchPath.
 *
 * The result structure is allocated in the specified memory context
 * (which might or might not be equal to CurrentMemoryContext); but any
 * junk created by revalidation calculations will be in CurrentMemoryContext.
 */


/*
 * CopyOverrideSearchPath - copy the specified OverrideSearchPath.
 *
 * The result structure is allocated in CurrentMemoryContext.
 */


/*
 * OverrideSearchPathMatchesCurrent - does path match current setting?
 *
 * This is tested over and over in some common code paths, and in the typical
 * scenario where the active search path seldom changes, it'll always succeed.
 * We make that case fast by keeping a generation counter that is advanced
 * whenever the active search path changes.
 */


/*
 * PushOverrideSearchPath - temporarily override the search path
 *
 * Do not use this function; almost any usage introduces a security
 * vulnerability.  It exists for the benefit of legacy code running in
 * non-security-sensitive environments.
 *
 * We allow nested overrides, hence the push/pop terminology.  The GUC
 * search_path variable is ignored while an override is active.
 *
 * It's possible that newpath->useTemp is set but there is no longer any
 * active temp namespace, if the path was saved during a transaction that
 * created a temp namespace and was later rolled back.  In that case we just
 * ignore useTemp.  A plausible alternative would be to create a new temp
 * namespace, but for existing callers that's not necessary because an empty
 * temp namespace wouldn't affect their results anyway.
 *
 * It's also worth noting that other schemas listed in newpath might not
 * exist anymore either.  We don't worry about this because OIDs that match
 * no existing namespace will simply not produce any hits during searches.
 */


/*
 * PopOverrideSearchPath - undo a previous PushOverrideSearchPath
 *
 * Any push during a (sub)transaction will be popped automatically at abort.
 * But it's caller error if a push isn't popped in normal control flow.
 */



/*
 * get_collation_oid - find a collation by possibly qualified name
 *
 * Note that this will only find collations that work with the current
 * database's encoding.
 */
Oid get_collation_oid(List *name, bool missing_ok) { return -1; }


/*
 * get_conversion_oid - find a conversion by possibly qualified name
 */


/*
 * FindDefaultConversionProc - find default encoding conversion proc
 */


/*
 * recomputeNamespacePath - recompute path derived variables if needed.
 */


/*
 * AccessTempTableNamespace
 *		Provide access to a temporary namespace, potentially creating it
 *		if not present yet.  This routine registers if the namespace gets
 *		in use in this transaction.  'force' can be set to true to allow
 *		the caller to enforce the creation of the temporary namespace for
 *		use in this backend, which happens if its creation is pending.
 */


/*
 * InitTempTableNamespace
 *		Initialize temp table namespace on first use in a particular backend
 */


/*
 * End-of-transaction cleanup for namespaces.
 */


/*
 * AtEOSubXact_Namespace
 *
 * At subtransaction commit, propagate the temp-namespace-creation
 * flag to the parent subtransaction.
 *
 * At subtransaction abort, forget the flag if we set it up.
 */


/*
 * Remove all relations in the specified temp namespace.
 *
 * This is called at backend shutdown (if we made any temp relations).
 * It is also called when we begin using a pre-existing temp namespace,
 * in order to clean out any relations that might have been created by
 * a crashed backend.
 */


/*
 * Callback to remove temp relations at backend exit.
 */


/*
 * Remove all temp tables from the temporary namespace.
 */



/*
 * Routines for handling the GUC variable 'search_path'.
 */

/* check_hook: validate new search_path value */


/* assign_hook: do extra actions as needed */


/*
 * InitializeSearchPath: initialize module during InitPostgres.
 *
 * This is called after we are up enough to be able to do catalog lookups.
 */


/*
 * NamespaceCallback
 *		Syscache inval callback function
 */


/*
 * Fetch the active search path. The return value is a palloc'ed list
 * of OIDs; the caller is responsible for freeing this storage as
 * appropriate.
 *
 * The returned list includes the implicitly-prepended namespaces only if
 * includeImplicit is true.
 *
 * Note: calling this may result in a CommandCounterIncrement operation,
 * if we have to create or clean out the temp namespace.
 */


/*
 * Fetch the active search path into a caller-allocated array of OIDs.
 * Returns the number of path entries.  (If this is more than sarray_len,
 * then the data didn't fit and is not all stored.)
 *
 * The returned list always includes the implicitly-prepended namespaces,
 * but never includes the temp namespace.  (This is suitable for existing
 * users, which would want to ignore the temp namespace anyway.)  This
 * definition allows us to not worry about initializing the temp namespace.
 */



/*
 * Export the FooIsVisible functions as SQL-callable functions.
 *
 * Note: as of Postgres 8.4, these will silently return NULL if called on
 * a nonexistent object OID, rather than failing.  This is to avoid race
 * condition errors when a query that's scanning a catalog using an MVCC
 * snapshot uses one of these functions.  The underlying IsVisible functions
 * always use an up-to-date snapshot and so might see the object as already
 * gone when it's still visible to the transaction snapshot.  (There is no race
 * condition in the current coding because we don't accept sinval messages
 * between the SearchSysCacheExists test and the subsequent lookup.)
 */