1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/* Copyright (C) 2005-2013 Shugo Maeda <shugo@ruby-lang.org> and Charlie Savage <cfis@savagexi.com>
Please see the LICENSE file for copyright and distribution information */
#include "ruby_prof.h"
VALUE cRpThread;
/* ====== thread_data_t ====== */
thread_data_t*
thread_data_create()
{
thread_data_t* result = ALLOC(thread_data_t);
result->stack = prof_stack_create();
result->method_table = method_table_create();
result->object = Qnil;
result->methods = Qnil;
return result;
}
/* The underlying c structures are freed when the parent profile is freed.
However, on shutdown the Ruby GC frees objects in any will-nilly order.
That means the ruby thread object wrapping the c thread struct may
be freed before the parent profile. Thus we add in a free function
for the garbage collector so that if it does get called will nil
out our Ruby object reference.*/
static void
thread_data_ruby_gc_free(thread_data_t* thread_data)
{
/* Has this thread object been accessed by Ruby? If
yes clean it up so to avoid a segmentation fault. */
if (thread_data->object != Qnil)
{
RDATA(thread_data->object)->data = NULL;
RDATA(thread_data->object)->dfree = NULL;
RDATA(thread_data->object)->dmark = NULL;
}
thread_data->object = Qnil;
}
static void
thread_data_free(thread_data_t* thread_data)
{
thread_data_ruby_gc_free(thread_data);
method_table_free(thread_data->method_table);
prof_stack_free(thread_data->stack);
thread_data->thread_id = Qnil;
xfree(thread_data);
}
static int
mark_methods(st_data_t key, st_data_t value, st_data_t result)
{
prof_method_t *method = (prof_method_t *) value;
prof_method_mark(method);
return ST_CONTINUE;
}
void
prof_thread_mark(thread_data_t *thread)
{
if (thread->object != Qnil)
rb_gc_mark(thread->object);
if (thread->methods != Qnil)
rb_gc_mark(thread->methods);
if (thread->thread_id != Qnil)
rb_gc_mark(thread->thread_id);
if (thread->fiber_id != Qnil)
rb_gc_mark(thread->fiber_id);
st_foreach(thread->method_table, mark_methods, 0);
}
VALUE
prof_thread_wrap(thread_data_t *thread)
{
if (thread->object == Qnil) {
thread->object = Data_Wrap_Struct(cRpThread, prof_thread_mark, thread_data_ruby_gc_free, thread);
}
return thread->object;
}
static thread_data_t*
prof_get_thread(VALUE self)
{
/* Can't use Data_Get_Struct because that triggers the event hook
ending up in endless recursion. */
thread_data_t* result = DATA_PTR(self);
if (!result)
rb_raise(rb_eRuntimeError, "This RubyProf::Thread instance has already been freed, likely because its profile has been freed.");
return result;
}
/* ====== Thread Table ====== */
/* The thread table is hash keyed on ruby thread_id that stores instances
of thread_data_t. */
st_table *
threads_table_create()
{
return st_init_numtable();
}
static int
thread_table_free_iterator(st_data_t key, st_data_t value, st_data_t dummy)
{
thread_data_free((thread_data_t*)value);
return ST_CONTINUE;
}
void
threads_table_free(st_table *table)
{
st_foreach(table, thread_table_free_iterator, 0);
st_free_table(table);
}
size_t
threads_table_insert(prof_profile_t* profile, VALUE fiber, thread_data_t *thread_data)
{
/* Its too slow to key on the real thread id so just typecast thread instead. */
return st_insert(profile->threads_tbl, (st_data_t) fiber, (st_data_t) thread_data);
}
thread_data_t *
threads_table_lookup(prof_profile_t* profile, VALUE thread_id, VALUE fiber_id)
{
thread_data_t* result;
st_data_t val;
/* If we should merge fibers, we use the thread_id as key, otherwise the fiber id.
None of this is perfect, as garbage collected fiber/thread might be reused again later.
A real solution would require integration with the garbage collector.
*/
VALUE key = profile->merge_fibers ? thread_id : fiber_id;
if (st_lookup(profile->threads_tbl, (st_data_t) key, &val))
{
result = (thread_data_t *) val;
}
else
{
result = thread_data_create();
result->thread_id = thread_id;
/* We set fiber id to 0 in the merge fiber case. Real fibers never have id 0,
so we can identify them later during printing.
*/
result->fiber_id = profile->merge_fibers ? INT2FIX(0) : fiber_id;
/* Insert the table */
threads_table_insert(profile, key, result);
}
return result;
}
thread_data_t *
switch_thread(void* prof, VALUE thread_id, VALUE fiber_id)
{
prof_profile_t* profile = (prof_profile_t*)prof;
double measurement = profile->measurer->measure();
/* Get new thread information. */
thread_data_t *thread_data = threads_table_lookup(profile, thread_id, fiber_id);
/* Get current frame for this thread */
prof_frame_t *frame = prof_stack_peek(thread_data->stack);
/* Update the time this thread waited for another thread */
if (frame)
{
frame->wait_time += measurement - frame->switch_time;
frame->switch_time = measurement;
}
/* Save on the last thread the time of the context switch
and reset this thread's last context switch to 0.*/
if (profile->last_thread_data)
{
prof_frame_t *last_frame = prof_stack_peek(profile->last_thread_data->stack);
if (last_frame)
last_frame->switch_time = measurement;
}
profile->last_thread_data = thread_data;
return thread_data;
}
int pause_thread(st_data_t key, st_data_t value, st_data_t data)
{
thread_data_t* thread_data = (thread_data_t *) value;
prof_profile_t* profile = (prof_profile_t*)data;
prof_frame_t* frame = prof_stack_peek(thread_data->stack);
prof_frame_pause(frame, profile->measurement_at_pause_resume);
return ST_CONTINUE;
}
int unpause_thread(st_data_t key, st_data_t value, st_data_t data)
{
thread_data_t* thread_data = (thread_data_t *) value;
prof_profile_t* profile = (prof_profile_t*)data;
prof_frame_t* frame = prof_stack_peek(thread_data->stack);
prof_frame_unpause(frame, profile->measurement_at_pause_resume);
return ST_CONTINUE;
}
static int
collect_methods(st_data_t key, st_data_t value, st_data_t result)
{
/* Called for each method stored in a thread's method table.
We want to store the method info information into an array.*/
VALUE methods = (VALUE) result;
prof_method_t *method = (prof_method_t *) value;
if (!method->excluded) {
rb_ary_push(methods, prof_method_wrap(method));
}
return ST_CONTINUE;
}
/* call-seq:
id -> number
Returns the id of this thread. */
static VALUE
prof_thread_id(VALUE self)
{
thread_data_t* thread = prof_get_thread(self);
return thread->thread_id;
}
/* call-seq:
fiber_id -> number
Returns the fiber id of this thread. */
static VALUE
prof_fiber_id(VALUE self)
{
thread_data_t* thread = prof_get_thread(self);
return thread->fiber_id;
}
/* call-seq:
methods -> Array of MethodInfo
Returns an array of methods that were called from this
thread during program execution. */
static VALUE
prof_thread_methods(VALUE self)
{
thread_data_t* thread = prof_get_thread(self);
if (thread->methods == Qnil)
{
thread->methods = rb_ary_new();
st_foreach(thread->method_table, collect_methods, thread->methods);
}
return thread->methods;
}
void rp_init_thread()
{
cRpThread = rb_define_class_under(mProf, "Thread", rb_cObject);
rb_undef_method(CLASS_OF(cRpThread), "new");
rb_define_method(cRpThread, "id", prof_thread_id, 0);
rb_define_method(cRpThread, "fiber_id", prof_fiber_id, 0);
rb_define_method(cRpThread, "methods", prof_thread_methods, 0);
}
|