1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
IMPLEMENTATION MODULE Sorting;
(* J. Andrea, Dec.16/91 *)
(* This code may be freely used and distributed, it may not be sold. *)
(* Adapted to ISO Module-2 by Frank Schoonjans Feb 2004 *)
FROM Storage IMPORT ALLOCATE;
CONST
max_stack = 20;
n_small = 6; (* use a simple sort for this size and smaller *)
VAR
rtemp :REAL;
ctemp :CARDINAL;
L, R, n :INTEGER;
top, bottom, lastflip :INTEGER;
tos :CARDINAL;
Lstack, Rstack :ARRAY [1..max_stack] OF INTEGER;
(* --------------------------------------------------- *)
PROCEDURE CardQSortIndex( x :ARRAY OF CARDINAL; array_len :CARDINAL;
VAR index :ARRAY OF CARDINAL );
VAR
median : CARDINAL;
i,j : INTEGER;
BEGIN
n := VAL(INTEGER,array_len) - 1; (* back to zero offset *)
(* initialize the index *)
FOR i := 0 TO n DO
index[i] := VAL(CARDINAL,i);
END;
tos := 0;
L := 0; R := n;
(* PUSH very first set *)
tos := tos + 1; Lstack[tos] := L; Rstack[tos] := R;
REPEAT
(* POP *)
L := Lstack[tos]; R := Rstack[tos]; tos := tos - 1;
IF R - L + 1 > n_small THEN
REPEAT
i := L; j := R; median := x[index[( L + R ) DIV 2]];
REPEAT
WHILE x[index[i]] < median DO
i := i + 1;
END;
WHILE median < x[index[j]] DO
j := j - 1;
END;
IF i <= j THEN (* swap *)
ctemp := index[i]; index[i] := index[j]; index[j] := ctemp;
i := i + 1; j := j - 1;
END;
UNTIL i > j;
IF j - L < R - i THEN
IF i < R THEN (* PUSH *)
tos := tos + 1; Lstack[tos] := i; Rstack[tos] := R;
END;
R := j;
ELSE
IF L < j THEN (* push *)
tos := tos + 1; Lstack[tos] := L; Rstack[tos] := j;
END;
L := i;
END;
UNTIL L >= R;
ELSE
(* small sort for small number of values *)
FOR i := L TO R - 1 DO
FOR j := i TO R DO
IF x[index[i]] > x[index[j]] THEN
ctemp := index[i];
index[i] := index[j];
index[j] := ctemp
END;
END;
END;
END; (* check for small *)
UNTIL tos = 0;
END CardQSortIndex;
(* --------------------------------------------------- *)
PROCEDURE RealQSortIndex( x :ARRAY OF REAL; array_len :CARDINAL;
VAR index :ARRAY OF CARDINAL );
VAR
median :REAL;
i,j :INTEGER;
BEGIN
n := VAL(INTEGER,array_len) - 1; (* back to zero offset *)
(* initialize the index *)
FOR i := 0 TO n DO
index[i] := VAL(CARDINAL,i);
END;
tos := 0;
L := 0; R := n;
(* PUSH very first set *)
tos := tos + 1; Lstack[tos] := L; Rstack[tos] := R;
REPEAT
(* POP *)
L := Lstack[tos]; R := Rstack[tos]; tos := tos - 1;
IF R - L + 1 > n_small THEN
REPEAT
i := L; j := R; median := x[index[( L + R ) DIV 2]];
REPEAT
WHILE x[index[i]] < median DO
i := i + 1;
END;
WHILE median < x[index[j]] DO
j := j - 1;
END;
IF i <= j THEN (* swap *)
ctemp := index[i]; index[i] := index[j]; index[j] := ctemp;
i := i + 1; j := j - 1;
END;
UNTIL i > j;
IF j - L < R - i THEN
IF i < R THEN (* PUSH *)
tos := tos + 1; Lstack[tos] := i; Rstack[tos] := R;
END;
R := j;
ELSE
IF L < j THEN (* push *)
tos := tos + 1; Lstack[tos] := L; Rstack[tos] := j;
END;
L := i;
END;
UNTIL L >= R;
ELSE
(* small sort for small number of values *)
FOR i := L TO R - 1 DO
FOR j := i TO R DO
IF x[index[i]] > x[index[j]] THEN
ctemp := index[i];
index[i] := index[j];
index[j] := ctemp
END;
END;
END;
END; (* check for small *)
UNTIL tos = 0;
END RealQSortIndex;
(* --------------------------------------------------- *)
PROCEDURE CardQSort( VAR x :ARRAY OF CARDINAL; array_len :CARDINAL );
VAR
median : CARDINAL;
n,i,j : INTEGER;
BEGIN
n := VAL(INTEGER,array_len) - 1; (* back to zero offset *)
tos := 0;
L := 0; R := n;
(* PUSH very first set *)
tos := tos + 1; Lstack[tos] := L; Rstack[tos] := R;
REPEAT
(* POP *)
L := Lstack[tos]; R := Rstack[tos]; tos := tos - 1;
IF R - L + 1 > n_small THEN
REPEAT
i := L; j := R; median := x[( L + R ) DIV 2];
REPEAT
WHILE x[i] < median DO
i := i + 1;
END;
WHILE median < x[j] DO
j := j - 1;
END;
IF i <= j THEN (* swap *)
ctemp := x[i]; x[i] := x[j]; x[j] := ctemp;
i := i + 1; j := j - 1;
END;
UNTIL i > j;
IF j - L < R - i THEN
IF i < R THEN (* PUSH *)
tos := tos + 1; Lstack[tos] := i; Rstack[tos] := R;
END;
R := j;
ELSE
IF L < j THEN (* push *)
tos := tos + 1; Lstack[tos] := L; Rstack[tos] := j;
END;
L := i;
END;
UNTIL L >= R;
ELSE
(* small sort for small number of values *)
FOR i := L TO R - 1 DO
FOR j := i TO R DO
IF x[i] > x[j] THEN
ctemp := x[i];
x[i] := x[j];
x[j] := ctemp
END;
END;
END;
END; (* check for small *)
UNTIL tos = 0;
END CardQSort;
(* ----------------------------------------------------- *)
PROCEDURE CardBSort( VAR x :ARRAY OF CARDINAL; array_len :CARDINAL );
VAR i,j : INTEGER;
BEGIN
top := 0; (* open arrays are zero offset *)
bottom := VAL(INTEGER,array_len) - 1;
WHILE top < bottom DO
lastflip := top;
FOR i := top TO bottom-1 DO
IF x[i] > x[i+1] THEN (* flip *)
ctemp := x[i];
x[i] := x[i+1];
x[i+1] := ctemp;
lastflip := i;
END;
END;
bottom := lastflip;
IF bottom > top THEN
i := bottom - 1;
FOR j := top TO bottom-1 DO
IF x[i] > x[i+1] THEN (* flip *)
ctemp := x[i];
x[i] := x[i+1];
x[i+1] := ctemp;
lastflip := i;
END;
i := i - 1;
END;
top := lastflip + 1;
ELSE
(* force a loop failure *)
top := bottom + 1;
END;
END;
END CardBSort;
(* ----------------------------------------------------- *)
PROCEDURE RealBSort( VAR x :ARRAY OF REAL; array_len :CARDINAL );
VAR bottom,top : INTEGER;
i,j : INTEGER;
BEGIN
top := 0; (* open arrays are zero offset *)
bottom := VAL(INTEGER,array_len) - 1;
WHILE top < bottom DO
lastflip := top;
FOR i := top TO bottom-1 DO
IF x[i] > x[i+1] THEN (* flip *)
rtemp := x[i];
x[i] := x[i+1];
x[i+1] := rtemp;
lastflip := i;
END;
END;
bottom := lastflip;
IF bottom > top THEN
i := bottom - 1;
FOR j := top TO bottom-1 DO
IF x[i] > x[i+1] THEN (* flip *)
rtemp := x[i];
x[i] := x[i+1];
x[i+1] := rtemp;
lastflip := i;
END;
i := i - 1;
END;
top := lastflip + 1;
ELSE
(* force a loop failure *)
top := bottom + 1;
END;
END;
END RealBSort;
(* ----------------------------------------------------- *)
PROCEDURE TopoSort( x, y :ARRAY OF CARDINAL; n_pairs :CARDINAL;
VAR solution :ARRAY OF CARDINAL; VAR n_solution :CARDINAL;
VAR error, sorted :BOOLEAN );
(*
This procedure needs some garbage collection added, i've tried but
will little success. J. Andrea, Dec.18/91
*)
TYPE
LPtr = POINTER TO Leader;
TPtr = POINTER TO Trailer;
Leader = RECORD
key :CARDINAL;
count :INTEGER;
trail :TPtr;
next :LPtr;
END;
Trailer = RECORD
id :LPtr;
next :TPtr;
END;
VAR
p, q, head, tail :LPtr;
t :TPtr;
i, max_solutions :CARDINAL;
(* -------------------------------------------- *)
PROCEDURE Find( w :CARDINAL ) :LPtr;
VAR h :LPtr;
BEGIN
h := head; tail^.key := w; (* sentinel *)
WHILE h^.key # w DO
h := h^.next;
END;
IF h = tail THEN
NEW( tail );
n := n + 1;
h^.count := 0;
h^.trail := NIL;
h^.next := tail;
END;
RETURN h;
END Find;
BEGIN
error := FALSE;
n_solution := 0;
IF n_pairs < 2 THEN
error := TRUE;
ELSE
max_solutions := HIGH( solution ) + 1;
NEW( head ); tail := head; n := 0;
(* add all of the given pairs *)
FOR i := 0 TO n_pairs - 1 DO
p := Find( x[i] ); q := Find( y[i] );
NEW(t);
t^.id := q;
t^.next := p^.trail;
p^.trail := t;
q^.count := q^.count + 1;
END;
(* search for leaders without predecessors *)
p := head; head := NIL;
WHILE p # tail DO
q := p; p := q^.next;
IF q^.count = 0 THEN
(* insert q^ in new chain *)
q^.next := head; head := q;
END;
END;
(* output phase *)
q := head;
WHILE ( NOT error ) & ( q # NIL ) DO
n_solution := n_solution + 1;
IF n_solution > max_solutions THEN
error := TRUE;
ELSE
solution[n_solution-1] := q^.key;
n := n - 1;
t := q^.trail; q := q^.next;
WHILE t # NIL DO
p := t^.id; p^.count := p^.count - 1;
IF p^.count = 0 THEN
(* insert p^ in leader list *)
p^.next := q; q := p;
END;
t := t^.next;
END;
END;
END;
IF n # 0 THEN
sorted := FALSE;
ELSE
sorted := TRUE;
END;
END;
END TopoSort;
BEGIN
END Sorting.
|