1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
(* Internal Syntax *)
(* Author: Frank Pfenning, Carsten Schuermann *)
(* Modified: Roberto Virga *)
functor IntSyn (structure Global : GLOBAL) :> INTSYN =
struct
type cid = int (* Constant identifier *)
type name = string (* Variable name *)
type mid = int (* Structure identifier *)
type csid = int (* CS module identifier *)
(* Contexts *)
datatype 'a Ctx = (* Contexts *)
Null (* G ::= . *)
| Decl of 'a Ctx * 'a (* | G, D *)
(* ctxPop (G) => G'
Invariant: G = G',D
*)
fun ctxPop (Decl (G, D)) = G
exception Error of string (* raised if out of space *)
(* ctxLookup (G, k) = D, kth declaration in G from right to left
Invariant: 1 <= k <= |G|, where |G| is length of G
*)
fun ctxLookup (Decl (G', D), 1) = D
| ctxLookup (Decl (G', _), k') = ctxLookup (G', k'-1)
(* | ctxLookup (Null, k') = (print ("Looking up k' = " ^ Int.toString k' ^ "\n"); raise Error "Out of Bounce\n")*)
(* ctxLookup (Null, k') should not occur by invariant *)
(* ctxLength G = |G|, the number of declarations in G *)
fun ctxLength G =
let
fun ctxLength' (Null, n) = n
| ctxLength' (Decl(G, _), n)= ctxLength' (G, n+1)
in
ctxLength' (G, 0)
end
type FgnExp = exn (* foreign expression representation *)
exception UnexpectedFgnExp of FgnExp
(* raised by a constraint solver
if passed an incorrect arg *)
type FgnCnstr = exn (* foreign unification constraint
representation *)
exception UnexpectedFgnCnstr of FgnCnstr
(* raised by a constraint solver
if passed an incorrect arg *)
datatype Depend = (* Dependency information *)
No (* P ::= No *)
| Maybe (* | Maybe *)
| Meta (* | Meta *)
(* Expressions *)
datatype Uni = (* Universes: *)
Kind (* L ::= Kind *)
| Type (* | Type *)
datatype Exp = (* Expressions: *)
Uni of Uni (* U ::= L *)
| Pi of (Dec * Depend) * Exp (* | bPi (D, P). V *)
| Root of Head * Spine (* | C @ S *)
| Redex of Exp * Spine (* | U @ S *)
| Lam of Dec * Exp (* | lam D. U *)
| EVar of Exp option ref * Dec Ctx * Exp * (Cnstr ref) list ref
(* | X<I> : G|-V, Cnstr *)
| EClo of Exp * Sub (* | U[s] *)
| AVar of Exp option ref (* | A<I> *)
| NVar of int (* | n (linear, fully applied) *)
(* grafting variable *)
| FgnExp of csid * FgnExp
(* | (foreign expression) *)
and Head = (* Heads: *)
BVar of int (* H ::= k *)
| Const of cid (* | c *)
| Proj of Block * int (* | #k(b) *)
| Skonst of cid (* | c# *)
| Def of cid (* | d *)
| NSDef of cid (* | d (non strict) *)
| FVar of name * Exp * Sub (* | F[s] *)
| FgnConst of csid * ConDec (* | (foreign constant) *)
and Spine = (* Spines: *)
Nil (* S ::= Nil *)
| App of Exp * Spine (* | U ; S *)
| SClo of Spine * Sub (* | S[s] *)
and Sub = (* Explicit substitutions: *)
Shift of int (* s ::= ^n *)
| Dot of Front * Sub (* | Ft.s *)
and Front = (* Fronts: *)
Idx of int (* Ft ::= k *)
| Exp of Exp (* | U *)
| Axp of Exp (* | U (assignable) *)
| Block of Block (* | _x *)
| Undef (* | _ *)
and Dec = (* Declarations: *)
Dec of name option * Exp (* D ::= x:V *)
| BDec of name option * (cid * Sub) (* | v:l[s] *)
| ADec of name option * int (* | v[^-d] *)
| NDec of name option
and Block = (* Blocks: *)
Bidx of int (* b ::= v *)
| LVar of Block option ref * Sub * (cid * Sub)
(* | L(l[^k],t) *)
| Inst of Exp list (* | u1, ..., Un *)
(* Constraints *)
and Cnstr = (* Constraint: *)
Solved (* Cnstr ::= solved *)
| Eqn of Dec Ctx * Exp * Exp (* | G|-(U1 == U2) *)
| FgnCnstr of csid * FgnCnstr (* | (foreign) *)
and Status = (* Status of a constant: *)
Normal (* inert *)
| Constraint of csid * (Dec Ctx * Spine * int -> Exp option)
(* acts as constraint *)
| Foreign of csid * (Spine -> Exp) (* is converted to foreign *)
and FgnUnify = (* Result of foreign unify *)
Succeed of FgnUnifyResidual list
(* succeed with a list of residual operations *)
| Fail
and FgnUnifyResidual = (* Residual of foreign unify *)
Assign of Dec Ctx * Exp * Exp * Sub
(* perform the assignment G |- X = U [ss] *)
| Delay of Exp * Cnstr ref
(* delay cnstr, associating it with all the rigid EVars in U *)
(* Global signature *)
and ConDec = (* Constant declaration *)
ConDec of string * mid option * int * Status
(* a : K : kind or *)
* Exp * Uni (* c : A : type *)
| ConDef of string * mid option * int (* a = A : K : kind or *)
* Exp * Exp * Uni (* d = M : A : type *)
* Ancestor (* Ancestor info for d or a *)
| AbbrevDef of string * mid option * int
(* a = A : K : kind or *)
* Exp * Exp * Uni (* d = M : A : type *)
| BlockDec of string * mid option (* %block l : SOME G1 PI G2 *)
* Dec Ctx * Dec list
| BlockDef of string * mid option * cid list
(* %block l = (l1 | ... | ln) *)
| SkoDec of string * mid option * int (* sa: K : kind or *)
* Exp * Uni (* sc: A : type *)
and Ancestor = (* Ancestor of d or a *)
Anc of cid option * int * cid option (* head(expand(d)), height, head(expand[height](d)) *)
(* NONE means expands to {x:A}B *)
datatype StrDec = (* Structure declaration *)
StrDec of string * mid option
(* Form of constant declaration *)
datatype ConDecForm =
FromCS (* from constraint domain *)
| Ordinary (* ordinary declaration *)
| Clause (* %clause declaration *)
(* Type abbreviations *)
type dctx = Dec Ctx (* G = . | G,D *)
type eclo = Exp * Sub (* Us = U[s] *)
type bclo = Block * Sub (* Bs = B[s] *)
type cnstr = Cnstr ref
(* exception Error of string (* raised if out of space *) *)
structure FgnExpStd = struct
structure ToInternal = FgnOpnTable (type arg = unit
type result = Exp)
structure Map = FgnOpnTable (type arg = Exp -> Exp
type result = Exp)
structure App = FgnOpnTable (type arg = Exp -> unit
type result = unit)
structure EqualTo = FgnOpnTable (type arg = Exp
type result = bool)
structure UnifyWith = FgnOpnTable (type arg = Dec Ctx * Exp
type result = FgnUnify)
fun fold csfe f b = let
val r = ref b
fun g U = r := f (U,!r)
in
App.apply csfe g ; !r
end
end
structure FgnCnstrStd = struct
structure ToInternal = FgnOpnTable (type arg = unit
type result = (Dec Ctx * Exp) list)
structure Awake = FgnOpnTable (type arg = unit
type result = bool)
structure Simplify = FgnOpnTable (type arg = unit
type result = bool)
end
fun conDecName (ConDec (name, _, _, _, _, _)) = name
| conDecName (ConDef (name, _, _, _, _, _, _)) = name
| conDecName (AbbrevDef (name, _, _, _, _, _)) = name
| conDecName (SkoDec (name, _, _, _, _)) = name
| conDecName (BlockDec (name, _, _, _)) = name
| conDecName (BlockDef (name, _, _)) = name
fun conDecParent (ConDec (_, parent, _, _, _, _)) = parent
| conDecParent (ConDef (_, parent, _, _, _, _, _)) = parent
| conDecParent (AbbrevDef (_, parent, _, _, _, _)) = parent
| conDecParent (SkoDec (_, parent, _, _, _)) = parent
| conDecParent (BlockDec (_, parent, _, _)) = parent
| conDecParent (BlockDef (_, parent, _)) = parent
(* conDecImp (CD) = k
Invariant:
If CD is either a declaration, definition, abbreviation, or
a Skolem constant
then k stands for the number of implicit elements.
*)
fun conDecImp (ConDec (_, _, i, _, _, _)) = i
| conDecImp (ConDef (_, _, i, _, _, _, _)) = i
| conDecImp (AbbrevDef (_, _, i, _, _, _)) = i
| conDecImp (SkoDec (_, _, i, _, _)) = i
| conDecImp (BlockDec (_, _, _, _)) = 0 (* watch out -- carsten *)
fun conDecStatus (ConDec (_, _, _, status, _, _)) = status
| conDecStatus _ = Normal
(* conDecType (CD) = V
Invariant:
If CD is either a declaration, definition, abbreviation, or
a Skolem constant
then V is the respective type
*)
fun conDecType (ConDec (_, _, _, _, V, _)) = V
| conDecType (ConDef (_, _, _, _, V, _, _)) = V
| conDecType (AbbrevDef (_, _, _, _, V, _)) = V
| conDecType (SkoDec (_, _, _, V, _)) = V
(* conDecBlock (CD) = (Gsome, Lpi)
Invariant:
If CD is block definition
then Gsome is the context of some variables
and Lpi is the list of pi variables
*)
fun conDecBlock (BlockDec (_, _, Gsome, Lpi)) = (Gsome, Lpi)
(* conDecUni (CD) = L
Invariant:
If CD is either a declaration, definition, abbreviation, or
a Skolem constant
then L is the respective universe
*)
fun conDecUni (ConDec (_, _, _, _, _, L)) = L
| conDecUni (ConDef (_, _, _, _, _, L, _)) = L
| conDecUni (AbbrevDef (_, _, _, _, _, L)) = L
| conDecUni (SkoDec (_, _, _, _, L)) = L
fun strDecName (StrDec (name, _)) = name
fun strDecParent (StrDec (_, parent)) = parent
local
val maxCid = Global.maxCid
val dummyEntry = ConDec("", NONE, 0, Normal, Uni (Kind), Kind)
val sgnArray = Array.array (maxCid+1, dummyEntry)
: ConDec Array.array
val nextCid = ref(0)
val maxMid = Global.maxMid
val sgnStructArray = Array.array (maxMid+1, StrDec("", NONE))
: StrDec Array.array
val nextMid = ref (0)
in
(* Invariants *)
(* Constant declarations are all well-typed *)
(* Constant declarations are stored in beta-normal form *)
(* All definitions are strict in all their arguments *)
(* If Const(cid) is valid, then sgnArray(cid) = ConDec _ *)
(* If Def(cid) is valid, then sgnArray(cid) = ConDef _ *)
fun sgnClean (i) = if i >= !nextCid then ()
else (Array.update (sgnArray, i, dummyEntry);
sgnClean (i+1))
fun sgnReset () = ((* Fri Dec 20 12:04:24 2002 -fp *)
(* this circumvents a space leak *)
sgnClean (0);
nextCid := 0; nextMid := 0)
fun sgnSize () = (!nextCid, !nextMid)
fun sgnAdd (conDec) =
let
val cid = !nextCid
in
if cid > maxCid
then raise Error ("Global signature size " ^ Int.toString (maxCid+1) ^ " exceeded")
else (Array.update (sgnArray, cid, conDec) ;
nextCid := cid + 1;
cid)
end
(* 0 <= cid < !nextCid *)
fun sgnLookup (cid) = Array.sub (sgnArray, cid)
fun sgnApp (f) =
let
fun sgnApp' (cid) =
if cid = !nextCid then () else (f cid; sgnApp' (cid+1))
in
sgnApp' (0)
end
fun sgnStructAdd (strDec) =
let
val mid = !nextMid
in
if mid > maxMid
then raise Error ("Global signature size " ^ Int.toString (maxMid+1) ^ " exceeded")
else (Array.update (sgnStructArray, mid, strDec) ;
nextMid := mid + 1;
mid)
end
(* 0 <= mid < !nextMid *)
fun sgnStructLookup (mid) = Array.sub (sgnStructArray, mid)
(* A hack used in Flit - jcreed 6/05 *)
fun rename (cid, new) =
let
val newConDec = case sgnLookup cid of
ConDec (n,m,i,s,e,u) => ConDec(new,m,i,s,e,u)
| ConDef (n,m,i,e,e',u,a) => ConDef(new,m,i,e,e',u,a)
| AbbrevDef (n,m,i,e,e',u) => AbbrevDef (new,m,i,e,e',u)
| BlockDec (n,m,d,d') => BlockDec (new,m,d,d')
| SkoDec (n,m,i,e,u) => SkoDec (new,m,i,e,u)
in
Array.update (sgnArray, cid, newConDec)
end
end
fun constDef (d) =
(case sgnLookup (d)
of ConDef(_, _, _, U,_, _, _) => U
| AbbrevDef (_, _, _, U,_, _) => U)
fun constType (c) = conDecType (sgnLookup c)
fun constImp (c) = conDecImp (sgnLookup c)
fun constUni (c) = conDecUni (sgnLookup c)
fun constBlock (c) = conDecBlock (sgnLookup c)
fun constStatus (c) =
(case sgnLookup (c)
of ConDec (_, _, _, status, _, _) => status
| _ => Normal)
(* Explicit Substitutions *)
(* id = ^0
Invariant:
G |- id : G id is patsub
*)
val id = Shift(0)
(* shift = ^1
Invariant:
G, V |- ^ : G ^ is patsub
*)
val shift = Shift(1)
(* invShift = ^-1 = _.^0
Invariant:
G |- ^-1 : G, V ^-1 is patsub
*)
val invShift = Dot(Undef, id)
(* comp (s1, s2) = s'
Invariant:
If G' |- s1 : G
and G'' |- s2 : G'
then s' = s1 o s2
and G'' |- s1 o s2 : G
If s1, s2 patsub
then s' patsub
*)
fun comp (Shift (0), s) = s
(* next line is an optimization *)
(* roughly 15% on standard suite for Twelf 1.1 *)
(* Sat Feb 14 10:15:16 1998 -fp *)
| comp (s, Shift (0)) = s
| comp (Shift (n), Dot (Ft, s)) = comp (Shift (n-1), s)
| comp (Shift (n), Shift (m)) = Shift (n+m)
| comp (Dot (Ft, s), s') = Dot (frontSub (Ft, s'), comp (s, s'))
(* bvarSub (n, s) = Ft'
Invariant:
If G |- s : G' G' |- n : V
then Ft' = Ftn if s = Ft1 .. Ftn .. ^k
or Ft' = ^(n+k) if s = Ft1 .. Ftm ^k and m<n
and G |- Ft' : V [s]
*)
and bvarSub (1, Dot(Ft, s)) = Ft
| bvarSub (n, Dot(Ft, s)) = bvarSub (n-1, s)
| bvarSub (n, Shift(k)) = Idx (n+k)
(* blockSub (B, s) = B'
Invariant:
If G |- s : G'
and G' |- B block
then G |- B' block
and B [s] == B'
*)
(* in front of substitutions, first case is irrelevant *)
(* Sun Dec 2 11:56:41 2001 -fp *)
and blockSub (Bidx k, s) =
(case bvarSub (k, s)
of Idx k' => Bidx k'
| Block B => B)
| blockSub (LVar (ref (SOME B), sk, _), s) =
blockSub (B, comp (sk, s))
(* -fp Sun Dec 1 21:18:30 2002 *)
(* --cs Sun Dec 1 11:25:41 2002 *)
(* Since always . |- t : Gsome, discard s *)
(* where is this needed? *)
(* Thu Dec 6 20:30:26 2001 -fp !!! *)
| blockSub (LVar (r as ref NONE, sk, (l, t)), s) =
LVar(r, comp(sk, s), (l, t))
(* was:
LVar (r, comp(sk, s), (l, comp (t, s)))
July 22, 2010 -fp -cs
*)
(* comp(^k, s) = ^k' for some k' by invariant *)
| blockSub (L as Inst ULs, s') = Inst (map (fn U => EClo (U, s')) ULs)
(* this should be right but somebody should verify *)
(* frontSub (Ft, s) = Ft'
Invariant:
If G |- s : G' G' |- Ft : V
then Ft' = Ft [s]
and G |- Ft' : V [s]
NOTE: EClo (U, s) might be undefined, so if this is ever
computed eagerly, we must introduce an "Undefined" exception,
raise it in whnf and handle it here so Exp (EClo (U, s)) => Undef
*)
and frontSub (Idx (n), s) = bvarSub (n, s)
| frontSub (Exp (U), s) = Exp (EClo (U, s))
| frontSub (Undef, s) = Undef
| frontSub (Block (B), s) = Block (blockSub (B, s))
(* decSub (x:V, s) = D'
Invariant:
If G |- s : G' G' |- V : L
then D' = x:V[s]
and G |- V[s] : L
*)
(* First line is an optimization suggested by cs *)
(* D[id] = D *)
(* Sat Feb 14 18:37:44 1998 -fp *)
(* seems to have no statistically significant effect *)
(* undo for now Sat Feb 14 20:22:29 1998 -fp *)
(*
fun decSub (D, Shift(0)) = D
| decSub (Dec (x, V), s) = Dec (x, EClo (V, s))
*)
fun decSub (Dec (x, V), s) = Dec (x, EClo (V, s))
| decSub (NDec x, s) = NDec x
| decSub (BDec (n, (l, t)), s) = BDec (n, (l, comp (t, s)))
(* dot1 (s) = s'
Invariant:
If G |- s : G'
then s' = 1. (s o ^)
and for all V s.t. G' |- V : L
G, V[s] |- s' : G', V
If s patsub then s' patsub
*)
(* first line is an optimization *)
(* roughly 15% on standard suite for Twelf 1.1 *)
(* Sat Feb 14 10:16:16 1998 -fp *)
fun dot1 (s as Shift (0)) = s
| dot1 s = Dot (Idx(1), comp(s, shift))
(* invDot1 (s) = s'
invDot1 (1. s' o ^) = s'
Invariant:
s = 1 . s' o ^
If G' |- s' : G
(so G',V[s] |- s : G,V)
*)
fun invDot1 (s) = comp (comp(shift, s), invShift)
(* Declaration Contexts *)
(* ctxDec (G, k) = x:V
Invariant:
If |G| >= k, where |G| is size of G,
then G |- k : V and G |- V : L
*)
fun ctxDec (G, k) =
let (* ctxDec' (G'', k') = x:V
where G |- ^(k-k') : G'', 1 <= k' <= k
*)
fun ctxDec' (Decl (G', Dec (x, V')), 1) = Dec (x, EClo (V', Shift (k)))
| ctxDec' (Decl (G', BDec (n, (l, s))), 1) = BDec (n, (l, comp (s, Shift (k))))
| ctxDec' (Decl (G', _), k') = ctxDec' (G', k'-1)
(* ctxDec' (Null, k') should not occur by invariant *)
in
ctxDec' (G, k)
end
(* blockDec (G, v, i) = V
Invariant:
If G (v) = l[s]
and Sigma (l) = SOME Gsome BLOCK Lblock
and G |- s : Gsome
then G |- pi (v, i) : V
*)
fun blockDec (G, v as (Bidx k), i) =
let
val BDec (_, (l, s)) = ctxDec (G, k)
(* G |- s : Gsome *)
val (Gsome, Lblock) = conDecBlock (sgnLookup l)
fun blockDec' (t, D :: L, 1, j) = decSub (D, t)
| blockDec' (t, _ :: L, n, j) =
blockDec' (Dot (Exp (Root (Proj (v, j), Nil)), t),
L, n-1, j+1)
in
blockDec' (s, Lblock, i, 1)
end
(* EVar related functions *)
(* newEVar (G, V) = newEVarCnstr (G, V, nil) *)
fun newEVar (G, V) = EVar(ref NONE, G, V, ref nil)
(* newAVar G = new AVar (assignable variable) *)
(* AVars carry no type, ctx, or cnstr *)
fun newAVar () = AVar(ref NONE)
(* newTypeVar (G) = X, X new
where G |- X : type
*)
fun newTypeVar (G) = EVar(ref NONE, G, Uni(Type), ref nil)
(* newLVar (l, s) = (l[s]) *)
fun newLVar (sk, (cid, t)) = LVar (ref NONE, sk, (cid, t))
(* Definition related functions *)
(* headOpt (U) = SOME(H) or NONE, U should be strict, normal *)
fun headOpt (Root (H, _)) = SOME(H)
| headOpt (Lam (_, U)) = headOpt U
| headOpt _ = NONE
fun ancestor' (NONE) = Anc(NONE, 0, NONE)
| ancestor' (SOME(Const(c))) = Anc(SOME(c), 1, SOME(c))
| ancestor' (SOME(Def(d))) =
(case sgnLookup(d)
of ConDef(_, _, _, _, _, _, Anc(_, height, cOpt))
=> Anc(SOME(d), height+1, cOpt))
| ancestor' (SOME _) = (* FgnConst possible, BVar impossible by strictness *)
Anc(NONE, 0, NONE)
(* ancestor(U) = ancestor info for d = U *)
fun ancestor (U) = ancestor' (headOpt U)
(* defAncestor(d) = ancestor of d, d must be defined *)
fun defAncestor (d) =
(case sgnLookup(d)
of ConDef(_, _, _, _, _, _, anc) => anc)
(* Type related functions *)
(* targetHeadOpt (V) = SOME(H) or NONE
where H is the head of the atomic target type of V,
NONE if V is a kind or object or have variable type.
Does not expand type definitions.
*)
(* should there possibly be a FgnConst case? also targetFamOpt -kw *)
fun targetHeadOpt (Root (H, _)) = SOME(H)
| targetHeadOpt (Pi(_, V)) = targetHeadOpt V
| targetHeadOpt (Redex (V, S)) = targetHeadOpt V
| targetHeadOpt (Lam (_, V)) = targetHeadOpt V
| targetHeadOpt (EVar (ref (SOME(V)),_,_,_)) = targetHeadOpt V
| targetHeadOpt (EClo (V, s)) = targetHeadOpt V
| targetHeadOpt _ = NONE
(* Root(Bvar _, _), Root(FVar _, _), Root(FgnConst _, _),
EVar(ref NONE,..), Uni, FgnExp _
*)
(* Root(Skonst _, _) can't occur *)
(* targetHead (A) = a
as in targetHeadOpt, except V must be a valid type
*)
fun targetHead (A) = valOf (targetHeadOpt A)
(* targetFamOpt (V) = SOME(cid) or NONE
where cid is the type family of the atomic target type of V,
NONE if V is a kind or object or have variable type.
Does expand type definitions.
*)
fun targetFamOpt (Root (Const(cid), _)) = SOME(cid)
| targetFamOpt (Pi(_, V)) = targetFamOpt V
| targetFamOpt (Root (Def(cid), _)) = targetFamOpt (constDef cid)
| targetFamOpt (Redex (V, S)) = targetFamOpt V
| targetFamOpt (Lam (_, V)) = targetFamOpt V
| targetFamOpt (EVar (ref (SOME(V)),_,_,_)) = targetFamOpt V
| targetFamOpt (EClo (V, s)) = targetFamOpt V
| targetFamOpt _ = NONE
(* Root(Bvar _, _), Root(FVar _, _), Root(FgnConst _, _),
EVar(ref NONE,..), Uni, FgnExp _
*)
(* Root(Skonst _, _) can't occur *)
(* targetFam (A) = a
as in targetFamOpt, except V must be a valid type
*)
fun targetFam (A) = valOf (targetFamOpt A)
end; (* functor IntSyn *)
structure IntSyn :> INTSYN =
IntSyn (structure Global = Global);
|