1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
// example file for roundedpath() in roundedpath.asy
// written by stefan knorr
// import needed packages
import roundedpath;
// function definition
picture CreateKOOS(real Scale, string legend) // draw labeled coordinate system as picture
{
picture ReturnPic;
real S = 1.2*Scale;
draw(ReturnPic, ((-S,0)--(S,0)), bar = EndArrow); // x axis
draw(ReturnPic, ((0,-S)--(0,S)), bar = EndArrow); // y axis
label(ReturnPic, "$\varepsilon$", (S,0), SW); // x axis label
label(ReturnPic, "$\sigma$", (0,S), SW); // y axis label
label(ReturnPic, legend, (0.7S, -S), NW); // add label 'legend'
return ReturnPic; // return picture
}
// some global definitions
real S = 13mm; // universal scale factor for the whole file
real grad = 0.25; // gradient for lines
real radius = 0.04; // radius for the rounded path'
real lw = 2; // linewidth
pair A = (-1, -1); // start point for graphs
pair E = ( 1, 1); // end point for graphs
path graph; // local graph
pen ActPen; // actual pen for each drawing
picture T[]; // vector of all four diagrams
real inc = 2.8; // increment-offset for combining pictures
//////////////////////////////////////// 1st diagram
T[1] = CreateKOOS(S, "$T_1$"); // initialise T[1] as empty diagram with label $T_1$
graph = A; // # pointwise definition of current path 'graph'
graph = graph -- (A.x + grad*1.6, A.y + 1.6); // #
graph = graph -- (E.x - grad*0.4, E.y - 0.4); // #
graph = graph -- E; // #
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
ActPen = rgb(0,0,0.6) + linewidth(lw); // define pen for drawing in 1st diagram
draw(T[1], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[1]' (1st hysteresis branch)
draw(T[1], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch)
graph = (0,0) -- (grad*0.6, 0.6) -- ( (grad*0.6, 0.6) + (0.1, 0) ); // define branch from origin to hysteresis
graph = roundedpath(graph, radius, S); // round this path
draw(T[1], graph, ActPen); // draw this path into 'T[1]'
//////////////////////////////////////// 2nd diagram
T[2] = CreateKOOS(S, "$T_2$"); // initialise T[2] as empty diagram with label $T_2$
graph = A; // # pointwise definition of current path 'graph'
graph = graph -- (A.x + grad*1.3, A.y + 1.3); // #
graph = graph -- (E.x - grad*0.7 , E.y - 0.7); // #
graph = graph -- E; // #
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
ActPen = rgb(0.2,0,0.4) + linewidth(lw); // define pen for drawing in 2nd diagram
draw(T[2], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[2]' (1st hysteresis branch)
draw(T[2], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch)
graph = (0,0) -- (grad*0.3, 0.3) -- ( (grad*0.3, 0.3) + (0.1, 0) ); // define branch from origin to hysteresis
graph = roundedpath(graph, radius, S); // round this path
draw(T[2], graph, ActPen); // draw this path into 'T[2]'
//////////////////////////////////////// 3rd diagram
T[3] = CreateKOOS(S, "$T_3$"); // initialise T[3] as empty diagram with label $T_3$
graph = A; // # pointwise definition of current path 'graph'
graph = graph -- (A.x + grad*0.7, A.y + 0.7); // #
graph = graph -- ( - grad*0.3 , - 0.3); // #
graph = graph -- (0,0); // #
graph = graph -- (grad*0.6, 0.6); // #
graph = graph -- (E.x - grad*0.4, E.y - 0.4); // #
graph = graph -- E; // #
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
ActPen = rgb(0.6,0,0.2) + linewidth(lw); // define pen for drawing in 3rd diagram
draw(T[3], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[3]' (1st hysteresis branch)
draw(T[3], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (2nd hysteresis branch)
//////////////////////////////////////// 4th diagram
T[4] = CreateKOOS(S, "$T_4$"); // initialise T[4] as empty diagram with label $T_4$
graph = A; // # pointwise definition of current path 'graph'
graph = graph -- (A.x + grad*0.4, A.y + 0.4); // #
graph = graph -- ( - grad*0.6 , - 0.6); // #
graph = graph -- (0,0); // #
graph = graph -- (grad*0.9, 0.9); // #
graph = graph -- (E.x - grad*0.1, E.y - 0.1); // #
graph = graph -- E; // #
graph = roundedpath(graph, radius, S); // round edges of 'graph' using roundedpath() in roundedpath.asy
ActPen = rgb(0.6,0,0) + linewidth(lw); // define pen for drawing in 4th diagram
draw(T[4], graph, ActPen); // draw 'graph' with 'ActPen' into 'T[4]' (1st hysteresis branch)
draw(T[4], rotate(180,(0,0))*graph, ActPen); // draw rotated 'graph' (3nd hysteresis branch)
// add some labels and black dots to the first two pictures
pair SWW = (-0.8, -0.6);
label(T[1], "$\sigma_f$", (0, 0.6S), NE); // sigma_f
draw(T[1], (0, 0.6S), linewidth(3) + black);
label(T[2], "$\sigma_f$", (0, 0.3S), NE); // sigma_f
draw(T[2], (0, 0.3S), linewidth(3) + black);
label(T[1], "$\varepsilon_p$", (0.7S, 0), SWW); // epsilon_p
draw(T[1], (0.75S, 0), linewidth(3) + black);
label(T[2], "$\varepsilon_p$", (0.7S, 0), SWW); // epsilon_p
draw(T[2], (0.75S, 0), linewidth(3) + black);
// add all pictures T[1...4] to the current one
add(T[1],(0,0));
add(T[2],(1*inc*S,0));
add(T[3],(2*inc*S,0));
add(T[4],(3*inc*S,0));
// draw line of constant \sigma and all intersection points with the graphs in T[1...4]
ActPen = linewidth(1) + dashed + gray(0.5); // pen definition
draw((-S, 0.45*S)--((3*inc+1)*S, 0.45*S), ActPen); // draw backgoundline
label("$\sigma_s$", (-S, 0.45S), W); // label 'sigma_s'
path mark = scale(2)*unitcircle; // define mark-symbol to be used for intersections
ActPen = linewidth(1) + gray(0.5); // define pen for intersection mark
draw(shift(( 1 - grad*0.55 + 0*inc)*S, 0.45*S)*mark, ActPen); // # draw all intersections
draw(shift((-1 + grad*1.45 + 0*inc)*S, 0.45*S)*mark, ActPen); // #
draw(shift(( 1 - grad*0.55 + 1*inc)*S, 0.45*S)*mark, ActPen); // #
draw(shift(( 1 - grad*0.55 + 2*inc)*S, 0.45*S)*mark, ActPen); // #
draw(shift(( grad*0.45 + 2*inc)*S, 0.45*S)*mark, ActPen); // #
draw(shift(( grad*0.45 + 3*inc)*S, 0.45*S)*mark, ActPen); // #
|