1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
$LOAD_PATH.unshift "./lib"
require 'benchmark'
require 'rspec/expectations'
require 'securerandom'
extend RSpec::Matchers
sizes = [10, 100, 1000, 2000, 4000]
puts "rspec-expectations #{RSpec::Expectations::Version::STRING} -- #{RUBY_ENGINE}/#{RUBY_VERSION}"
puts
puts "Failing `match_array` expectation with lists of distinct strings having 1 unmatched pair"
puts
Benchmark.benchmark do |bm|
sizes.each do |size|
actual = Array.new(size) { SecureRandom.uuid }
expecteds = Array.new(3) do
array = actual.shuffle
# replace one entry with a different value
array[rand(array.length)] = SecureRandom.uuid
array
end
expecteds.each do |expected|
bm.report("#{size.to_s.rjust(5)} items") do
begin
expect(actual).to match_array(expected)
rescue RSpec::Expectations::ExpectationNotMetError
else
raise "did not fail but should have"
end
end
end
end
end
__END__
Before new composable matchers algo:
10 items 0.000000 0.000000 0.000000 ( 0.000813)
10 items 0.000000 0.000000 0.000000 ( 0.000099)
10 items 0.000000 0.000000 0.000000 ( 0.000127)
100 items 0.000000 0.000000 0.000000 ( 0.000707)
100 items 0.000000 0.000000 0.000000 ( 0.000612)
100 items 0.000000 0.000000 0.000000 ( 0.000600)
1000 items 0.040000 0.000000 0.040000 ( 0.038679)
1000 items 0.040000 0.000000 0.040000 ( 0.041379)
1000 items 0.040000 0.000000 0.040000 ( 0.036680)
2000 items 0.130000 0.000000 0.130000 ( 0.131681)
2000 items 0.120000 0.000000 0.120000 ( 0.123664)
2000 items 0.130000 0.000000 0.130000 ( 0.128799)
4000 items 0.490000 0.000000 0.490000 ( 0.489446)
4000 items 0.510000 0.000000 0.510000 ( 0.511915)
4000 items 0.480000 0.010000 0.490000 ( 0.477616)
After:
10 items 0.000000 0.000000 0.000000 ( 0.001382)
10 items 0.000000 0.000000 0.000000 ( 0.000156)
10 items 0.000000 0.000000 0.000000 ( 0.000161)
100 items 0.010000 0.000000 0.010000 ( 0.005052)
100 items 0.000000 0.000000 0.000000 ( 0.004991)
100 items 0.010000 0.000000 0.010000 ( 0.004984)
1000 items 0.470000 0.000000 0.470000 ( 0.470043)
1000 items 0.500000 0.000000 0.500000 ( 0.499316)
1000 items 0.490000 0.000000 0.490000 ( 0.488582)
2000 items 1.910000 0.000000 1.910000 ( 1.917279)
2000 items 1.930000 0.010000 1.940000 ( 1.931002)
2000 items 1.920000 0.000000 1.920000 ( 1.928989)
4000 items 7.860000 0.010000 7.870000 ( 7.881995)
4000 items 7.980000 0.010000 7.990000 ( 8.003643)
4000 items 8.000000 0.010000 8.010000 ( 8.031382)
With "smaller subproblem" optimization: (about 25% slower)
10 items 0.010000 0.000000 0.010000 ( 0.001331)
10 items 0.000000 0.000000 0.000000 ( 0.000175)
10 items 0.000000 0.000000 0.000000 ( 0.000165)
100 items 0.000000 0.000000 0.000000 ( 0.006137)
100 items 0.010000 0.000000 0.010000 ( 0.005880)
100 items 0.000000 0.000000 0.000000 ( 0.005950)
1000 items 0.630000 0.000000 0.630000 ( 0.634294)
1000 items 0.620000 0.000000 0.620000 ( 0.622427)
1000 items 0.640000 0.000000 0.640000 ( 0.641505)
2000 items 2.420000 0.000000 2.420000 ( 2.419876)
2000 items 2.430000 0.000000 2.430000 ( 2.442544)
2000 items 2.380000 0.010000 2.390000 ( 2.385106)
4000 items 9.780000 0.010000 9.790000 ( 9.811499)
4000 items 9.670000 0.010000 9.680000 ( 9.688799)
4000 items 9.710000 0.010000 9.720000 ( 9.743054)
With "implement `values_match?` ourselves" optimization: (more than twice as fast!)
10 items 0.000000 0.000000 0.000000 ( 0.001189)
10 items 0.000000 0.000000 0.000000 ( 0.000149)
10 items 0.000000 0.000000 0.000000 ( 0.000130)
100 items 0.000000 0.000000 0.000000 ( 0.002927)
100 items 0.000000 0.000000 0.000000 ( 0.002856)
100 items 0.010000 0.000000 0.010000 ( 0.003028)
1000 items 0.250000 0.000000 0.250000 ( 0.245146)
1000 items 0.240000 0.000000 0.240000 ( 0.246291)
1000 items 0.320000 0.000000 0.320000 ( 0.315192)
2000 items 1.120000 0.000000 1.120000 ( 1.128162)
2000 items 1.030000 0.000000 1.030000 ( 1.034982)
2000 items 1.060000 0.000000 1.060000 ( 1.063870)
4000 items 4.530000 0.000000 4.530000 ( 4.556346)
4000 items 4.400000 0.010000 4.410000 ( 4.414447)
4000 items 4.410000 0.000000 4.410000 ( 4.417440)
With e === a || a == e || values_match?(e,a)
10 items 0.000000 0.000000 0.000000 ( 0.001466)
10 items 0.000000 0.000000 0.000000 ( 0.000258)
10 items 0.000000 0.000000 0.000000 ( 0.000251)
100 items 0.020000 0.000000 0.020000 ( 0.012369)
100 items 0.010000 0.000000 0.010000 ( 0.012345)
100 items 0.010000 0.000000 0.010000 ( 0.012744)
1000 items 1.180000 0.000000 1.180000 ( 1.187754)
1000 items 1.200000 0.000000 1.200000 ( 1.198681)
1000 items 1.210000 0.000000 1.210000 ( 1.210159)
2000 items 4.760000 0.000000 4.760000 ( 4.764911)
2000 items 4.760000 0.000000 4.760000 ( 4.757022)
2000 items 4.760000 0.000000 4.760000 ( 4.771776)
4000 items 19.070000 0.010000 19.080000 ( 19.077930)
4000 items 19.090000 0.010000 19.100000 ( 19.104171)
4000 items 19.260000 0.010000 19.270000 ( 19.289653)
With values_match?(e,a)
10 items 0.000000 0.000000 0.000000 ( 0.001462)
10 items 0.000000 0.000000 0.000000 ( 0.000253)
10 items 0.000000 0.000000 0.000000 ( 0.000244)
100 items 0.010000 0.000000 0.010000 ( 0.011913)
100 items 0.010000 0.000000 0.010000 ( 0.011858)
100 items 0.020000 0.000000 0.020000 ( 0.011992)
1000 items 1.210000 0.000000 1.210000 ( 1.226960)
1000 items 1.140000 0.000000 1.140000 ( 1.147002)
1000 items 1.180000 0.000000 1.180000 ( 1.194010)
2000 items 4.690000 0.010000 4.700000 ( 4.740503)
2000 items 4.680000 0.000000 4.680000 ( 4.676084)
2000 items 4.570000 0.000000 4.570000 ( 4.581262)
4000 items 18.450000 0.010000 18.460000 ( 18.532578)
4000 items 18.400000 0.010000 18.410000 ( 18.520454)
4000 items 18.490000 0.020000 18.510000 ( 18.592491)
|