File: passing_with_duplicate_items.rb

package info (click to toggle)
ruby-rspec 3.13.0c0e0m0s1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,856 kB
  • sloc: ruby: 70,868; sh: 1,423; makefile: 99
file content (132 lines) | stat: -rw-r--r-- 5,781 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
$LOAD_PATH.unshift "./lib"
require 'benchmark'
require 'rspec/expectations'

extend RSpec::Matchers

sizes = [10, 100, 1000, 2000]

puts "rspec-expectations #{RSpec::Expectations::Version::STRING} -- #{RUBY_ENGINE}/#{RUBY_VERSION}"

puts
puts "Passing `match_array` expectation with lists of integers including duplicate values"
puts

Benchmark.benchmark do |bm|
  sizes.each do |size|
    actual    = Array.new(size) { rand(size / 2) }
    expecteds = Array.new(3)    { actual.shuffle }
    expecteds.each do |expected|
      bm.report("#{size.to_s.rjust(5)} items") do
        expect(actual).to match_array(expected)
      end
    end
  end
end

__END__

Before new composable matchers algo:

   10 items  0.000000   0.000000   0.000000 (  0.000665)
   10 items  0.000000   0.000000   0.000000 (  0.000027)
   10 items  0.000000   0.000000   0.000000 (  0.000015)
  100 items  0.000000   0.000000   0.000000 (  0.000250)
  100 items  0.000000   0.000000   0.000000 (  0.000176)
  100 items  0.000000   0.000000   0.000000 (  0.000181)
 1000 items  0.010000   0.000000   0.010000 (  0.013612)
 1000 items  0.020000   0.000000   0.020000 (  0.013409)
 1000 items  0.020000   0.000000   0.020000 (  0.018222)
 2000 items  0.060000   0.000000   0.060000 (  0.057428)
 2000 items  0.060000   0.000000   0.060000 (  0.058242)
 2000 items  0.060000   0.000000   0.060000 (  0.063026)

After:

   10 items  0.000000   0.000000   0.000000 (  0.001835)
   10 items  0.000000   0.000000   0.000000 (  0.000327)
   10 items  0.000000   0.000000   0.000000 (  0.000336)
  100 items  0.030000   0.000000   0.030000 (  0.025134)
  100 items  0.030000   0.000000   0.030000 (  0.032476)
  100 items  0.020000   0.000000   0.020000 (  0.024273)
 1000 items  2.600000   0.040000   2.640000 (  2.649328)
 1000 items  2.510000   0.020000   2.530000 (  2.523448)
 1000 items  2.470000   0.000000   2.470000 (  2.476770)
 2000 items 11.590000   0.110000  11.700000 ( 11.719525)
 2000 items 10.750000   0.080000  10.830000 ( 10.845655)
 2000 items 11.140000   0.080000  11.220000 ( 11.241852)

With "smaller subproblem" optimization: (about 35% faster)

   10 items  0.000000   0.000000   0.000000 (  0.001236)
   10 items  0.000000   0.000000   0.000000 (  0.000278)
   10 items  0.000000   0.000000   0.000000 (  0.000293)
  100 items  0.010000   0.000000   0.010000 (  0.013229)
  100 items  0.020000   0.000000   0.020000 (  0.013932)
  100 items  0.020000   0.000000   0.020000 (  0.019739)
 1000 items  1.580000   0.030000   1.610000 (  1.622586)
 1000 items  1.670000   0.020000   1.690000 (  1.683174)
 1000 items  1.570000   0.010000   1.580000 (  1.588718)
 2000 items  7.030000   0.100000   7.130000 (  7.139178)
 2000 items  7.220000   0.090000   7.310000 (  7.328606)
 2000 items  6.930000   0.130000   7.060000 (  7.070295)

With "implement `values_match?` ourselves" optimization: (about 20% faster)

   10 items  0.000000   0.000000   0.000000 (  0.001352)
   10 items  0.000000   0.000000   0.000000 (  0.000313)
   10 items  0.000000   0.000000   0.000000 (  0.000298)
  100 items  0.010000   0.000000   0.010000 (  0.011200)
  100 items  0.010000   0.000000   0.010000 (  0.013465)
  100 items  0.020000   0.000000   0.020000 (  0.021589)
 1000 items  1.320000   0.030000   1.350000 (  1.350071)
 1000 items  1.280000   0.020000   1.300000 (  1.298206)
 1000 items  1.370000   0.010000   1.380000 (  1.392149)
 2000 items  6.120000   0.110000   6.230000 (  6.252104)
 2000 items  6.170000   0.090000   6.260000 (  6.270807)
 2000 items  5.910000   0.150000   6.060000 (  6.066389)

With `match_when_sorted?` optimization: (many orders of magnitude faster!)

   10 items  0.000000   0.000000   0.000000 (  0.001134)
   10 items  0.000000   0.000000   0.000000 (  0.000029)
   10 items  0.000000   0.000000   0.000000 (  0.000020)
  100 items  0.000000   0.000000   0.000000 (  0.000070)
  100 items  0.000000   0.000000   0.000000 (  0.000066)
  100 items  0.000000   0.000000   0.000000 (  0.000065)
 1000 items  0.000000   0.000000   0.000000 (  0.000612)
 1000 items  0.000000   0.000000   0.000000 (  0.000608)
 1000 items  0.000000   0.000000   0.000000 (  0.000613)
 2000 items  0.010000   0.000000   0.010000 (  0.001235)
 2000 items  0.000000   0.000000   0.000000 (  0.001282)
 2000 items  0.000000   0.000000   0.000000 (  0.001227)

With e === a || a == e || values_match?(e,a)

   10 items  0.010000   0.000000   0.010000 (  0.001258)
   10 items  0.000000   0.000000   0.000000 (  0.000034)
   10 items  0.000000   0.000000   0.000000 (  0.000027)
  100 items  0.000000   0.000000   0.000000 (  0.000124)
  100 items  0.000000   0.000000   0.000000 (  0.000151)
  100 items  0.000000   0.000000   0.000000 (  0.000121)
 1000 items  0.000000   0.000000   0.000000 (  0.001212)
 1000 items  0.000000   0.000000   0.000000 (  0.001193)
 1000 items  0.000000   0.000000   0.000000 (  0.001293)
 2000 items  0.000000   0.000000   0.000000 (  0.002433)
 2000 items  0.010000   0.000000   0.010000 (  0.002351)
 2000 items  0.000000   0.000000   0.000000 (  0.002404)

With values_match?(e,a)

   10 items  0.000000   0.000000   0.000000 (  0.001202)
   10 items  0.000000   0.000000   0.000000 (  0.000028)
   10 items  0.000000   0.000000   0.000000 (  0.000024)
  100 items  0.000000   0.000000   0.000000 (  0.000147)
  100 items  0.000000   0.000000   0.000000 (  0.000122)
  100 items  0.000000   0.000000   0.000000 (  0.000142)
 1000 items  0.000000   0.000000   0.000000 (  0.001201)
 1000 items  0.000000   0.000000   0.000000 (  0.001233)
 1000 items  0.000000   0.000000   0.000000 (  0.001221)
 2000 items  0.010000   0.000000   0.010000 (  0.002382)
 2000 items  0.000000   0.000000   0.000000 (  0.002353)
 2000 items  0.000000   0.000000   0.000000 (  0.002371)