1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
$LOAD_PATH.unshift "./lib"
require 'benchmark'
require 'rspec/expectations'
extend RSpec::Matchers
sizes = [10, 100, 1000, 2000]
puts "rspec-expectations #{RSpec::Expectations::Version::STRING} -- #{RUBY_ENGINE}/#{RUBY_VERSION}"
puts
puts "Passing `match_array` expectation with lists of integers including duplicate values"
puts
Benchmark.benchmark do |bm|
sizes.each do |size|
actual = Array.new(size) { rand(size / 2) }
expecteds = Array.new(3) { actual.shuffle }
expecteds.each do |expected|
bm.report("#{size.to_s.rjust(5)} items") do
expect(actual).to match_array(expected)
end
end
end
end
__END__
Before new composable matchers algo:
10 items 0.000000 0.000000 0.000000 ( 0.000665)
10 items 0.000000 0.000000 0.000000 ( 0.000027)
10 items 0.000000 0.000000 0.000000 ( 0.000015)
100 items 0.000000 0.000000 0.000000 ( 0.000250)
100 items 0.000000 0.000000 0.000000 ( 0.000176)
100 items 0.000000 0.000000 0.000000 ( 0.000181)
1000 items 0.010000 0.000000 0.010000 ( 0.013612)
1000 items 0.020000 0.000000 0.020000 ( 0.013409)
1000 items 0.020000 0.000000 0.020000 ( 0.018222)
2000 items 0.060000 0.000000 0.060000 ( 0.057428)
2000 items 0.060000 0.000000 0.060000 ( 0.058242)
2000 items 0.060000 0.000000 0.060000 ( 0.063026)
After:
10 items 0.000000 0.000000 0.000000 ( 0.001835)
10 items 0.000000 0.000000 0.000000 ( 0.000327)
10 items 0.000000 0.000000 0.000000 ( 0.000336)
100 items 0.030000 0.000000 0.030000 ( 0.025134)
100 items 0.030000 0.000000 0.030000 ( 0.032476)
100 items 0.020000 0.000000 0.020000 ( 0.024273)
1000 items 2.600000 0.040000 2.640000 ( 2.649328)
1000 items 2.510000 0.020000 2.530000 ( 2.523448)
1000 items 2.470000 0.000000 2.470000 ( 2.476770)
2000 items 11.590000 0.110000 11.700000 ( 11.719525)
2000 items 10.750000 0.080000 10.830000 ( 10.845655)
2000 items 11.140000 0.080000 11.220000 ( 11.241852)
With "smaller subproblem" optimization: (about 35% faster)
10 items 0.000000 0.000000 0.000000 ( 0.001236)
10 items 0.000000 0.000000 0.000000 ( 0.000278)
10 items 0.000000 0.000000 0.000000 ( 0.000293)
100 items 0.010000 0.000000 0.010000 ( 0.013229)
100 items 0.020000 0.000000 0.020000 ( 0.013932)
100 items 0.020000 0.000000 0.020000 ( 0.019739)
1000 items 1.580000 0.030000 1.610000 ( 1.622586)
1000 items 1.670000 0.020000 1.690000 ( 1.683174)
1000 items 1.570000 0.010000 1.580000 ( 1.588718)
2000 items 7.030000 0.100000 7.130000 ( 7.139178)
2000 items 7.220000 0.090000 7.310000 ( 7.328606)
2000 items 6.930000 0.130000 7.060000 ( 7.070295)
With "implement `values_match?` ourselves" optimization: (about 20% faster)
10 items 0.000000 0.000000 0.000000 ( 0.001352)
10 items 0.000000 0.000000 0.000000 ( 0.000313)
10 items 0.000000 0.000000 0.000000 ( 0.000298)
100 items 0.010000 0.000000 0.010000 ( 0.011200)
100 items 0.010000 0.000000 0.010000 ( 0.013465)
100 items 0.020000 0.000000 0.020000 ( 0.021589)
1000 items 1.320000 0.030000 1.350000 ( 1.350071)
1000 items 1.280000 0.020000 1.300000 ( 1.298206)
1000 items 1.370000 0.010000 1.380000 ( 1.392149)
2000 items 6.120000 0.110000 6.230000 ( 6.252104)
2000 items 6.170000 0.090000 6.260000 ( 6.270807)
2000 items 5.910000 0.150000 6.060000 ( 6.066389)
With `match_when_sorted?` optimization: (many orders of magnitude faster!)
10 items 0.000000 0.000000 0.000000 ( 0.001134)
10 items 0.000000 0.000000 0.000000 ( 0.000029)
10 items 0.000000 0.000000 0.000000 ( 0.000020)
100 items 0.000000 0.000000 0.000000 ( 0.000070)
100 items 0.000000 0.000000 0.000000 ( 0.000066)
100 items 0.000000 0.000000 0.000000 ( 0.000065)
1000 items 0.000000 0.000000 0.000000 ( 0.000612)
1000 items 0.000000 0.000000 0.000000 ( 0.000608)
1000 items 0.000000 0.000000 0.000000 ( 0.000613)
2000 items 0.010000 0.000000 0.010000 ( 0.001235)
2000 items 0.000000 0.000000 0.000000 ( 0.001282)
2000 items 0.000000 0.000000 0.000000 ( 0.001227)
With e === a || a == e || values_match?(e,a)
10 items 0.010000 0.000000 0.010000 ( 0.001258)
10 items 0.000000 0.000000 0.000000 ( 0.000034)
10 items 0.000000 0.000000 0.000000 ( 0.000027)
100 items 0.000000 0.000000 0.000000 ( 0.000124)
100 items 0.000000 0.000000 0.000000 ( 0.000151)
100 items 0.000000 0.000000 0.000000 ( 0.000121)
1000 items 0.000000 0.000000 0.000000 ( 0.001212)
1000 items 0.000000 0.000000 0.000000 ( 0.001193)
1000 items 0.000000 0.000000 0.000000 ( 0.001293)
2000 items 0.000000 0.000000 0.000000 ( 0.002433)
2000 items 0.010000 0.000000 0.010000 ( 0.002351)
2000 items 0.000000 0.000000 0.000000 ( 0.002404)
With values_match?(e,a)
10 items 0.000000 0.000000 0.000000 ( 0.001202)
10 items 0.000000 0.000000 0.000000 ( 0.000028)
10 items 0.000000 0.000000 0.000000 ( 0.000024)
100 items 0.000000 0.000000 0.000000 ( 0.000147)
100 items 0.000000 0.000000 0.000000 ( 0.000122)
100 items 0.000000 0.000000 0.000000 ( 0.000142)
1000 items 0.000000 0.000000 0.000000 ( 0.001201)
1000 items 0.000000 0.000000 0.000000 ( 0.001233)
1000 items 0.000000 0.000000 0.000000 ( 0.001221)
2000 items 0.010000 0.000000 0.010000 ( 0.002382)
2000 items 0.000000 0.000000 0.000000 ( 0.002353)
2000 items 0.000000 0.000000 0.000000 ( 0.002371)
|