1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
$LOAD_PATH.unshift "./lib"
require 'benchmark'
require 'rspec/expectations'
require 'securerandom'
extend RSpec::Matchers
sizes = [10, 100, 1000, 2000, 4000]
puts "rspec-expectations #{RSpec::Expectations::Version::STRING} -- #{RUBY_ENGINE}/#{RUBY_VERSION}"
puts
puts "Passing `match_array` expectation with lists of distinct strings"
puts
Benchmark.benchmark do |bm|
sizes.each do |size|
actual = Array.new(size) { SecureRandom.uuid }
expecteds = Array.new(3) { actual.shuffle }
expecteds.each do |expected|
bm.report("#{size.to_s.rjust(5)} items") do
expect(actual).to match_array(expected)
end
end
end
end
__END__
Before new composable matchers algo:
10 items 0.000000 0.000000 0.000000 ( 0.000857)
10 items 0.000000 0.000000 0.000000 ( 0.000029)
10 items 0.000000 0.000000 0.000000 ( 0.000018)
100 items 0.000000 0.000000 0.000000 ( 0.000334)
100 items 0.000000 0.000000 0.000000 ( 0.000372)
100 items 0.000000 0.000000 0.000000 ( 0.000331)
1000 items 0.030000 0.000000 0.030000 ( 0.029778)
1000 items 0.030000 0.000000 0.030000 ( 0.030566)
1000 items 0.030000 0.000000 0.030000 ( 0.033150)
2000 items 0.140000 0.000000 0.140000 ( 0.141719)
2000 items 0.120000 0.000000 0.120000 ( 0.124348)
2000 items 0.120000 0.000000 0.120000 ( 0.121202)
4000 items 0.490000 0.000000 0.490000 ( 0.500631)
4000 items 0.470000 0.000000 0.470000 ( 0.468477)
4000 items 0.490000 0.010000 0.500000 ( 0.492957)
After:
10 items 0.000000 0.000000 0.000000 ( 0.001165)
10 items 0.000000 0.000000 0.000000 ( 0.000131)
10 items 0.000000 0.000000 0.000000 ( 0.000127)
100 items 0.000000 0.000000 0.000000 ( 0.005636)
100 items 0.010000 0.000000 0.010000 ( 0.004881)
100 items 0.000000 0.000000 0.000000 ( 0.004676)
1000 items 0.500000 0.000000 0.500000 ( 0.505676)
1000 items 0.490000 0.000000 0.490000 ( 0.483469)
1000 items 0.490000 0.000000 0.490000 ( 0.497841)
2000 items 1.950000 0.000000 1.950000 ( 1.966324)
2000 items 1.970000 0.000000 1.970000 ( 1.975567)
2000 items 1.900000 0.000000 1.900000 ( 1.902315)
4000 items 7.650000 0.010000 7.660000 ( 7.672907)
4000 items 7.720000 0.010000 7.730000 ( 7.735615)
4000 items 7.730000 0.000000 7.730000 ( 7.756837)
With "smaller subproblem" optimization: (about 20% slower)
10 items 0.000000 0.000000 0.000000 ( 0.001099)
10 items 0.000000 0.000000 0.000000 ( 0.000110)
10 items 0.000000 0.000000 0.000000 ( 0.000102)
100 items 0.010000 0.000000 0.010000 ( 0.005462)
100 items 0.010000 0.000000 0.010000 ( 0.005433)
100 items 0.000000 0.000000 0.000000 ( 0.005409)
1000 items 0.570000 0.000000 0.570000 ( 0.569302)
1000 items 0.570000 0.000000 0.570000 ( 0.577496)
1000 items 0.560000 0.000000 0.560000 ( 0.555496)
2000 items 2.330000 0.000000 2.330000 ( 2.325537)
2000 items 2.450000 0.000000 2.450000 ( 2.464415)
2000 items 2.470000 0.000000 2.470000 ( 2.472999)
4000 items 9.380000 0.010000 9.390000 ( 9.406678)
4000 items 9.320000 0.010000 9.330000 ( 9.340727)
4000 items 9.330000 0.010000 9.340000 ( 9.358326)
With "implement `values_match?` ourselves" optimization: (about twice as fast!)
10 items 0.000000 0.000000 0.000000 ( 0.001113)
10 items 0.000000 0.000000 0.000000 ( 0.000074)
10 items 0.000000 0.000000 0.000000 ( 0.000071)
100 items 0.000000 0.000000 0.000000 ( 0.002558)
100 items 0.010000 0.000000 0.010000 ( 0.002528)
100 items 0.000000 0.000000 0.000000 ( 0.002555)
1000 items 0.300000 0.000000 0.300000 ( 0.306318)
1000 items 0.260000 0.000000 0.260000 ( 0.253526)
1000 items 0.240000 0.000000 0.240000 ( 0.246096)
2000 items 1.070000 0.000000 1.070000 ( 1.065989)
2000 items 1.040000 0.000000 1.040000 ( 1.047495)
2000 items 1.080000 0.000000 1.080000 ( 1.078392)
4000 items 4.520000 0.000000 4.520000 ( 4.529568)
4000 items 4.570000 0.010000 4.580000 ( 4.597785)
4000 items 5.030000 0.010000 5.040000 ( 5.079452)
With `match_when_sorted?` optimization: (many orders of magnitude faster!)
10 items 0.010000 0.000000 0.010000 ( 0.002044)
10 items 0.000000 0.000000 0.000000 ( 0.000038)
10 items 0.000000 0.000000 0.000000 ( 0.000031)
100 items 0.000000 0.000000 0.000000 ( 0.000149)
100 items 0.000000 0.000000 0.000000 ( 0.000137)
100 items 0.000000 0.000000 0.000000 ( 0.000136)
1000 items 0.000000 0.000000 0.000000 ( 0.001426)
1000 items 0.000000 0.000000 0.000000 ( 0.001369)
1000 items 0.000000 0.000000 0.000000 ( 0.001355)
2000 items 0.010000 0.000000 0.010000 ( 0.003304)
2000 items 0.000000 0.000000 0.000000 ( 0.002192)
2000 items 0.000000 0.000000 0.000000 ( 0.002849)
4000 items 0.000000 0.000000 0.000000 ( 0.007730)
4000 items 0.010000 0.000000 0.010000 ( 0.006074)
4000 items 0.010000 0.000000 0.010000 ( 0.006514)
With e === a || a == e || values_match?(e,a)
10 items 0.000000 0.000000 0.000000 ( 0.002202)
10 items 0.000000 0.000000 0.000000 ( 0.000054)
10 items 0.000000 0.000000 0.000000 ( 0.000046)
100 items 0.000000 0.000000 0.000000 ( 0.000203)
100 items 0.000000 0.000000 0.000000 ( 0.000199)
100 items 0.000000 0.000000 0.000000 ( 0.000192)
1000 items 0.010000 0.000000 0.010000 ( 0.001438)
1000 items 0.000000 0.000000 0.000000 ( 0.001419)
1000 items 0.000000 0.000000 0.000000 ( 0.001474)
2000 items 0.010000 0.000000 0.010000 ( 0.003341)
2000 items 0.000000 0.000000 0.000000 ( 0.003224)
2000 items 0.000000 0.000000 0.000000 ( 0.003251)
4000 items 0.010000 0.000000 0.010000 ( 0.007156)
4000 items 0.010000 0.000000 0.010000 ( 0.006715)
4000 items 0.000000 0.000000 0.000000 ( 0.006676)
With values_match?(e,a)
10 items 0.000000 0.000000 0.000000 ( 0.001173)
10 items 0.000000 0.000000 0.000000 ( 0.000051)
10 items 0.000000 0.000000 0.000000 ( 0.000026)
100 items 0.000000 0.000000 0.000000 ( 0.000171)
100 items 0.000000 0.000000 0.000000 ( 0.000138)
100 items 0.000000 0.000000 0.000000 ( 0.000136)
1000 items 0.010000 0.000000 0.010000 ( 0.001506)
1000 items 0.000000 0.000000 0.000000 ( 0.001486)
1000 items 0.000000 0.000000 0.000000 ( 0.001510)
2000 items 0.010000 0.000000 0.010000 ( 0.003153)
2000 items 0.000000 0.010000 0.010000 ( 0.003883)
2000 items 0.000000 0.000000 0.000000 ( 0.003199)
4000 items 0.010000 0.000000 0.010000 ( 0.007178)
4000 items 0.000000 0.000000 0.000000 ( 0.006629)
4000 items 0.010000 0.000000 0.010000 ( 0.006435)
|