File: passing_with_distinct_items.rb

package info (click to toggle)
ruby-rspec 3.4.0c3e0m1s1-1~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 6,124 kB
  • sloc: ruby: 59,418; sh: 1,405; makefile: 98
file content (154 lines) | stat: -rw-r--r-- 6,995 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
$LOAD_PATH.unshift "./lib"
require 'benchmark'
require 'rspec/expectations'
require 'securerandom'

extend RSpec::Matchers

sizes = [10, 100, 1000, 2000, 4000]

puts "rspec-expectations #{RSpec::Expectations::Version::STRING} -- #{RUBY_ENGINE}/#{RUBY_VERSION}"

puts
puts "Passing `match_array` expectation with lists of distinct strings"
puts

Benchmark.benchmark do |bm|
  sizes.each do |size|
    actual    = Array.new(size) { SecureRandom.uuid }
    expecteds = Array.new(3)    { actual.shuffle }
    expecteds.each do |expected|
      bm.report("#{size.to_s.rjust(5)} items") do
        expect(actual).to match_array(expected)
      end
    end
  end
end

__END__

Before new composable matchers algo:

   10 items  0.000000   0.000000   0.000000 (  0.000857)
   10 items  0.000000   0.000000   0.000000 (  0.000029)
   10 items  0.000000   0.000000   0.000000 (  0.000018)
  100 items  0.000000   0.000000   0.000000 (  0.000334)
  100 items  0.000000   0.000000   0.000000 (  0.000372)
  100 items  0.000000   0.000000   0.000000 (  0.000331)
 1000 items  0.030000   0.000000   0.030000 (  0.029778)
 1000 items  0.030000   0.000000   0.030000 (  0.030566)
 1000 items  0.030000   0.000000   0.030000 (  0.033150)
 2000 items  0.140000   0.000000   0.140000 (  0.141719)
 2000 items  0.120000   0.000000   0.120000 (  0.124348)
 2000 items  0.120000   0.000000   0.120000 (  0.121202)
 4000 items  0.490000   0.000000   0.490000 (  0.500631)
 4000 items  0.470000   0.000000   0.470000 (  0.468477)
 4000 items  0.490000   0.010000   0.500000 (  0.492957)

After:

   10 items  0.000000   0.000000   0.000000 (  0.001165)
   10 items  0.000000   0.000000   0.000000 (  0.000131)
   10 items  0.000000   0.000000   0.000000 (  0.000127)
  100 items  0.000000   0.000000   0.000000 (  0.005636)
  100 items  0.010000   0.000000   0.010000 (  0.004881)
  100 items  0.000000   0.000000   0.000000 (  0.004676)
 1000 items  0.500000   0.000000   0.500000 (  0.505676)
 1000 items  0.490000   0.000000   0.490000 (  0.483469)
 1000 items  0.490000   0.000000   0.490000 (  0.497841)
 2000 items  1.950000   0.000000   1.950000 (  1.966324)
 2000 items  1.970000   0.000000   1.970000 (  1.975567)
 2000 items  1.900000   0.000000   1.900000 (  1.902315)
 4000 items  7.650000   0.010000   7.660000 (  7.672907)
 4000 items  7.720000   0.010000   7.730000 (  7.735615)
 4000 items  7.730000   0.000000   7.730000 (  7.756837)

With "smaller subproblem" optimization: (about 20% slower)

   10 items  0.000000   0.000000   0.000000 (  0.001099)
   10 items  0.000000   0.000000   0.000000 (  0.000110)
   10 items  0.000000   0.000000   0.000000 (  0.000102)
  100 items  0.010000   0.000000   0.010000 (  0.005462)
  100 items  0.010000   0.000000   0.010000 (  0.005433)
  100 items  0.000000   0.000000   0.000000 (  0.005409)
 1000 items  0.570000   0.000000   0.570000 (  0.569302)
 1000 items  0.570000   0.000000   0.570000 (  0.577496)
 1000 items  0.560000   0.000000   0.560000 (  0.555496)
 2000 items  2.330000   0.000000   2.330000 (  2.325537)
 2000 items  2.450000   0.000000   2.450000 (  2.464415)
 2000 items  2.470000   0.000000   2.470000 (  2.472999)
 4000 items  9.380000   0.010000   9.390000 (  9.406678)
 4000 items  9.320000   0.010000   9.330000 (  9.340727)
 4000 items  9.330000   0.010000   9.340000 (  9.358326)

With "implement `values_match?` ourselves" optimization: (about twice as fast!)

   10 items  0.000000   0.000000   0.000000 (  0.001113)
   10 items  0.000000   0.000000   0.000000 (  0.000074)
   10 items  0.000000   0.000000   0.000000 (  0.000071)
  100 items  0.000000   0.000000   0.000000 (  0.002558)
  100 items  0.010000   0.000000   0.010000 (  0.002528)
  100 items  0.000000   0.000000   0.000000 (  0.002555)
 1000 items  0.300000   0.000000   0.300000 (  0.306318)
 1000 items  0.260000   0.000000   0.260000 (  0.253526)
 1000 items  0.240000   0.000000   0.240000 (  0.246096)
 2000 items  1.070000   0.000000   1.070000 (  1.065989)
 2000 items  1.040000   0.000000   1.040000 (  1.047495)
 2000 items  1.080000   0.000000   1.080000 (  1.078392)
 4000 items  4.520000   0.000000   4.520000 (  4.529568)
 4000 items  4.570000   0.010000   4.580000 (  4.597785)
 4000 items  5.030000   0.010000   5.040000 (  5.079452)

With `match_when_sorted?` optimization: (many orders of magnitude faster!)

   10 items  0.010000   0.000000   0.010000 (  0.002044)
   10 items  0.000000   0.000000   0.000000 (  0.000038)
   10 items  0.000000   0.000000   0.000000 (  0.000031)
  100 items  0.000000   0.000000   0.000000 (  0.000149)
  100 items  0.000000   0.000000   0.000000 (  0.000137)
  100 items  0.000000   0.000000   0.000000 (  0.000136)
 1000 items  0.000000   0.000000   0.000000 (  0.001426)
 1000 items  0.000000   0.000000   0.000000 (  0.001369)
 1000 items  0.000000   0.000000   0.000000 (  0.001355)
 2000 items  0.010000   0.000000   0.010000 (  0.003304)
 2000 items  0.000000   0.000000   0.000000 (  0.002192)
 2000 items  0.000000   0.000000   0.000000 (  0.002849)
 4000 items  0.000000   0.000000   0.000000 (  0.007730)
 4000 items  0.010000   0.000000   0.010000 (  0.006074)
 4000 items  0.010000   0.000000   0.010000 (  0.006514)

With e === a || a == e || values_match?(e,a)

   10 items  0.000000   0.000000   0.000000 (  0.002202)
   10 items  0.000000   0.000000   0.000000 (  0.000054)
   10 items  0.000000   0.000000   0.000000 (  0.000046)
  100 items  0.000000   0.000000   0.000000 (  0.000203)
  100 items  0.000000   0.000000   0.000000 (  0.000199)
  100 items  0.000000   0.000000   0.000000 (  0.000192)
 1000 items  0.010000   0.000000   0.010000 (  0.001438)
 1000 items  0.000000   0.000000   0.000000 (  0.001419)
 1000 items  0.000000   0.000000   0.000000 (  0.001474)
 2000 items  0.010000   0.000000   0.010000 (  0.003341)
 2000 items  0.000000   0.000000   0.000000 (  0.003224)
 2000 items  0.000000   0.000000   0.000000 (  0.003251)
 4000 items  0.010000   0.000000   0.010000 (  0.007156)
 4000 items  0.010000   0.000000   0.010000 (  0.006715)
 4000 items  0.000000   0.000000   0.000000 (  0.006676)

With values_match?(e,a)

   10 items  0.000000   0.000000   0.000000 (  0.001173)
   10 items  0.000000   0.000000   0.000000 (  0.000051)
   10 items  0.000000   0.000000   0.000000 (  0.000026)
  100 items  0.000000   0.000000   0.000000 (  0.000171)
  100 items  0.000000   0.000000   0.000000 (  0.000138)
  100 items  0.000000   0.000000   0.000000 (  0.000136)
 1000 items  0.010000   0.000000   0.010000 (  0.001506)
 1000 items  0.000000   0.000000   0.000000 (  0.001486)
 1000 items  0.000000   0.000000   0.000000 (  0.001510)
 2000 items  0.010000   0.000000   0.010000 (  0.003153)
 2000 items  0.000000   0.010000   0.010000 (  0.003883)
 2000 items  0.000000   0.000000   0.000000 (  0.003199)
 4000 items  0.010000   0.000000   0.010000 (  0.007178)
 4000 items  0.000000   0.000000   0.000000 (  0.006629)
 4000 items  0.010000   0.000000   0.010000 (  0.006435)