1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
# Ruby OpenAI
[](https://badge.fury.io/rb/ruby-openai)
[](https://github.com/alexrudall/ruby-openai/blob/main/LICENSE.txt)
[](https://circleci.com/gh/alexrudall/ruby-openai)
[](https://codeclimate.com/github/codeclimate/codeclimate/maintainability)
Use the [OpenAI API](https://openai.com/blog/openai-api/) with Ruby! š¤ā¤ļø
Generate text with ChatGPT, transcribe and translate audio with Whisper, or create images with DALLĀ·E...
Check out [Ruby AI Builders](https://discord.gg/k4Uc224xVD) on Discord!
### Bundler
Add this line to your application's Gemfile:
```ruby
gem "ruby-openai"
```
And then execute:
$ bundle install
### Gem install
Or install with:
$ gem install ruby-openai
and require with:
```ruby
require "openai"
```
## Upgrading
The `::Ruby::OpenAI` module has been removed and all classes have been moved under the top level `::OpenAI` module. To upgrade, change `require 'ruby/openai'` to `require 'openai'` and change all references to `Ruby::OpenAI` to `OpenAI`.
## Usage
- Get your API key from [https://beta.openai.com/account/api-keys](https://beta.openai.com/account/api-keys)
- If you belong to multiple organizations, you can get your Organization ID from [https://beta.openai.com/account/org-settings](https://beta.openai.com/account/org-settings)
### Quickstart
For a quick test you can pass your token directly to a new client:
```ruby
client = OpenAI::Client.new(access_token: "access_token_goes_here")
```
### With Config
For a more robust setup, you can configure the gem with your API keys, for example in an `openai.rb` initializer file. Never hardcode secrets into your codebase - instead use something like [dotenv](https://github.com/motdotla/dotenv) to pass the keys safely into your environments.
```ruby
OpenAI.configure do |config|
config.access_token = ENV.fetch('OPENAI_ACCESS_TOKEN')
config.organization_id = ENV.fetch('OPENAI_ORGANIZATION_ID') # Optional.
end
```
Then you can create a client like this:
```ruby
client = OpenAI::Client.new
```
#### Custom timeout or base URI
The default timeout for any OpenAI request is 120 seconds. You can change that passing the `request_timeout` when initializing the client. You can also change the base URI used for all requests, eg. to use observability tools like [Helicone](https://docs.helicone.ai/quickstart/integrate-in-one-line-of-code):
```ruby
client = OpenAI::Client.new(
access_token: "access_token_goes_here",
uri_base: "https://oai.hconeai.com",
request_timeout: 240
)
```
or when configuring the gem:
```ruby
OpenAI.configure do |config|
config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
config.uri_base = "https://oai.hconeai.com" # Optional
config.request_timeout = 240 # Optional
end
```
### Models
There are different models that can be used to generate text. For a full list and to retrieve information about a single models:
```ruby
client.models.list
client.models.retrieve(id: "text-ada-001")
```
#### Examples
- [GPT-4 (limited beta)](https://platform.openai.com/docs/models/gpt-4)
- gpt-4
- gpt-4-0314
- gpt-4-32k
- [GPT-3.5](https://platform.openai.com/docs/models/gpt-3-5)
- gpt-3.5-turbo
- gpt-3.5-turbo-0301
- text-davinci-003
- [GPT-3](https://platform.openai.com/docs/models/gpt-3)
- text-ada-001
- text-babbage-001
- text-curie-001
### ChatGPT
ChatGPT is a model that can be used to generate text in a conversational style. You can use it to [generate a response](https://platform.openai.com/docs/api-reference/chat/create) to a sequence of [messages](https://platform.openai.com/docs/guides/chat/introduction):
```ruby
response = client.chat(
parameters: {
model: "gpt-3.5-turbo", # Required.
messages: [{ role: "user", content: "Hello!"}], # Required.
temperature: 0.7,
})
puts response.dig("choices", 0, "message", "content")
# => "Hello! How may I assist you today?"
```
### Completions
Hit the OpenAI API for a completion using other GPT-3 models:
```ruby
response = client.completions(
parameters: {
model: "text-davinci-001",
prompt: "Once upon a time",
max_tokens: 5
})
puts response["choices"].map { |c| c["text"] }
# => [", there lived a great"]
```
### Edits
Send a string and some instructions for what to do to the string:
```ruby
response = client.edits(
parameters: {
model: "text-davinci-edit-001",
input: "What day of the wek is it?",
instruction: "Fix the spelling mistakes"
}
)
puts response.dig("choices", 0, "text")
# => What day of the week is it?
```
### Embeddings
You can use the embeddings endpoint to get a vector of numbers representing an input. You can then compare these vectors for different inputs to efficiently check how similar the inputs are.
```ruby
client.embeddings(
parameters: {
model: "babbage-similarity",
input: "The food was delicious and the waiter..."
}
)
```
### Files
Put your data in a `.jsonl` file like this:
```json
{"prompt":"Overjoyed with my new phone! ->", "completion":" positive"}
{"prompt":"@lakers disappoint for a third straight night ->", "completion":" negative"}
```
and pass the path to `client.files.upload` to upload it to OpenAI, and then interact with it:
```ruby
client.files.upload(parameters: { file: "path/to/sentiment.jsonl", purpose: "fine-tune" })
client.files.list
client.files.retrieve(id: 123)
client.files.content(id: 123)
client.files.delete(id: 123)
```
### Fine-tunes
Upload your fine-tuning data in a `.jsonl` file as above and get its ID:
```ruby
response = client.files.upload(parameters: { file: "path/to/sentiment.jsonl", purpose: "fine-tune" })
file_id = JSON.parse(response.body)["id"]
```
You can then use this file ID to create a fine-tune model:
```ruby
response = client.finetunes.create(
parameters: {
training_file: file_id,
model: "text-ada-001"
})
fine_tune_id = JSON.parse(response.body)["id"]
```
That will give you the fine-tune ID. If you made a mistake you can cancel the fine-tune model before it is processed:
```ruby
client.finetunes.cancel(id: fine_tune_id)
```
You may need to wait a short time for processing to complete. Once processed, you can use list or retrieve to get the name of the fine-tuned model:
```ruby
client.finetunes.list
response = client.finetunes.retrieve(id: fine_tune_id)
fine_tuned_model = JSON.parse(response.body)["fine_tuned_model"]
```
This fine-tuned model name can then be used in completions:
```ruby
response = client.completions(
parameters: {
model: fine_tuned_model,
prompt: "I love Mondays!"
}
)
JSON.parse(response.body)["choices"].map { |c| c["text"] }
```
You can delete the fine-tuned model when you are done with it:
```ruby
client.finetunes.delete(fine_tuned_model: fine_tuned_model)
```
### Image Generation
Generate an image using DALLĀ·E! The size of any generated images must be one of `256x256`, `512x512` or `1024x1024` -
if not specified the image will default to `1024x1024`.
```ruby
response = client.images.generate(parameters: { prompt: "A baby sea otter cooking pasta wearing a hat of some sort", size: "256x256" })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
```

### Image Edit
Fill in the transparent part of an image, or upload a mask with transparent sections to indicate the parts of an image that can be changed according to your prompt...
```ruby
response = client.images.edit(parameters: { prompt: "A solid red Ruby on a blue background", image: "image.png", mask: "mask.png" })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
```

### Image Variations
Create n variations of an image.
```ruby
response = client.images.variations(parameters: { image: "image.png", n: 2 })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
```


### Moderations
Pass a string to check if it violates OpenAI's Content Policy:
```ruby
response = client.moderations(parameters: { input: "I'm worried about that." })
puts response.dig("results", 0, "category_scores", "hate")
# => 5.505014632944949e-05
```
### Whisper
Whisper is a speech to text model that can be used to generate text based on audio files:
#### Translate
The translations API takes as input the audio file in any of the supported languages and transcribes the audio into English.
```ruby
response = client.translate(
parameters: {
model: "whisper-1",
file: File.open('path_to_file', 'rb'),
})
puts response.parsed_response['text']
# => "Translation of the text"
```
#### Transcribe
The transcriptions API takes as input the audio file you want to transcribe and returns the text in the desired output file format.
```ruby
response = client.transcribe(
parameters: {
model: "whisper-1",
file: File.open('path_to_file', 'rb'),
})
puts response.parsed_response['text']
# => "Transcription of the text"
```
## Development
After checking out the repo, run `bin/setup` to install dependencies. You can run `bin/console` for an interactive prompt that will allow you to experiment.
To install this gem onto your local machine, run `bundle exec rake install`.
## Release
First run the specs without VCR so they actually hit the API. This will cost about 2 cents. You'll need to add your `OPENAI_ACCESS_TOKEN=` in `.env`.
```
NO_VCR=true bundle exec rspec
```
Then update the version number in `version.rb`, update `CHANGELOG.md`, run `bundle install` to update Gemfile.lock, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
## Contributing
Bug reports and pull requests are welcome on GitHub at <https://github.com/alexrudall/ruby-openai>. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [code of conduct](https://github.com/alexrudall/ruby-openai/blob/main/CODE_OF_CONDUCT.md).
## License
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
## Code of Conduct
Everyone interacting in the Ruby OpenAI project's codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/alexrudall/ruby-openai/blob/main/CODE_OF_CONDUCT.md).
|