1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
module Rubyvis
class Layout
# Alias for Rubyvis::Layout::Indent
def self.Pack
Rubyvis::Layout::Pack
end
# Implements a hierarchical layout using circle-packing. The meaning of
# the exported mark prototypes changes slightly in the space-filling
# implementation:<ul>
#
# <li><tt>node</tt> - for rendering nodes; typically a Rubyvis::Dot.
#
# <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
# in the arrangement of the space-filling nodes.
#
# <p><li><tt>label</tt> - for rendering node labels; typically a
# Rubyvis::Label.
#
# </ul>The pack layout support dynamic sizing for leaf nodes, if a
# {@link #size} psuedo-property is specified. The default size function returns
# 1, causing all leaf nodes to be sized equally, and all internal nodes to be
# sized by the number of leaf nodes they have as descendants.
#
# <p>The size function can be used in conjunction with the order property,
# which allows the nodes to the sorted by the computed size. Note: for sorting
# based on other data attributes, simply use the default <tt>null</tt> for the
# order property, and sort the nodes beforehand using the {@link pv.Dom}
# operator.
#
# <p>For more details on how to use this layout, see
# Rubyvis::Layout::Hierarchy.
#
# @extends pv.Layout.Hierarchy
# @see <a href="http://portal.acm.org/citation.cfm?id=1124772.1124851"
# >"Visualization of large hierarchical data by circle packing"</a> by W. Wang,
# H. Wang, G. Dai, and H. Wang, ACM CHI 2006.
#/
class Pack < Hierarchy
@properties=Hierarchy.properties.dup
def initialize
super
@node.
shape_radius(lambda {|n| n.radius }).
stroke_style("rgb(31, 119, 180)").
fill_style("rgba(31, 119, 180, 0.25)")
@node_label.text_align("center")
@link=nil
@radius = lambda { 1 }
end
##
# :attr: spacing
# The spacing parameter; defaults to 1, which provides a little bit of padding
# between sibling nodes and the enclosing circle. Larger values increase the
# spacing, by making the sibling nodes smaller; a value of zero makes the leaf
# nodes as large as possible, with no padding on enclosing circles.
#
# @type number
##
# :attr: order
# The sibling node order. The default order is <tt>null</tt>, which means to
# use the sibling order specified by the nodes property as-is. A value of
# "ascending" will sort siblings in ascending order of size, while "descending"
# will do the reverse. For sorting based on data attributes other than size,
# use the default <tt>null</tt> for the order property, and sort the nodes
# beforehand using the {@link pv.Dom} operator.
#
# @see pv.Dom.Node#sort
attr_accessor_dsl :spacing, :order
##
# Default properties for circle-packing layouts. The default spacing parameter
# is 1 and the default order is "ascending".
#
def self.defaults
Rubyvis::Layout::Pack.new.mark_extend(Rubyvis::Layout::Hierarchy.defaults).
spacing(1).
order("ascending")
end
# TODO is it possible for spacing to operate in pixel space?
# Right now it appears to be multiples of the smallest radius.
##
# Specifies the sizing function. By default, a sizing function is disabled and
# all nodes are given constant size. The sizing function is invoked for each
# leaf node in the tree (passed to the constructor).
#
# <p>For example, if the tree data structure represents a file system, with
# files as leaf nodes, and each file has a <tt>bytes</tt> attribute, you can
# specify a size function as:
#
# <pre> .size(function(d) d.bytes)</pre>
#
# As with other properties, a size function may specify additional arguments to
# access the data associated with the layout and any enclosing panels.
#
# @param {function} f the new sizing function.
# @returns {pv.Layout.Pack} this.
def size(f)
if f.is_a? Proc
@radius=lambda {|*args| Math.sqrt(f.js_apply(self,args))}
else
f=Math.sqrt(f)
@radius=lambda {f}
end
self
end
## @private Compute the radii of the leaf nodes. #/
def radii(nodes)
stack=Mark.stack
stack.unshift(nil)
nodes.each {|c|
if !c.first_child
stack[0]=c
c.radius = @radius.js_apply(self, stack)
end
}
stack.shift
end
def pack_tree(n)
nodes = []
c=n.first_child
while(c)
c.radius=pack_tree(c) if c.first_child
c.n=c._p=c
nodes.push(c)
c=c.next_sibling
end
# Sort.
case @s.order
when "ascending"
nodes.sort {|a,b| a.radius<=>b.radius}
when 'descending'
nodes.sort {|a,b| b.radius<=>a.radius}
when 'reverse'
nodes.reverse
end
return pack_circle(nodes)
end
def bound(n)
@x_min = [n.x - n.radius, @x_min].min
@x_max = [n.x + n.radius, @x_max].max
@y_min = [n.y - n.radius, @y_min].min
@y_max = [n.y + n.radius, @y_max].max
end
def insert(a,b)
c = a.n
a.n = b
b._p = a
b.n = c
c._p = b
end
def splice(a, b)
a.n = b
b._p = a
end
def intersects(a, b)
dx = b.x - a.x
dy = b.y - a.y
dr = a.radius + b.radius
(dr * dr - dx * dx - dy * dy) > 0.001 # within epsilon
end
## @private #/
def place(a, b, c)
da = b.radius + c.radius
db = a.radius + c.radius
dx = b.x - a.x
dy = b.y - a.y
dc = Math.sqrt(dx * dx + dy * dy)
cos = (db * db + dc * dc - da * da) / (2.0 * db * dc)
theta = Math.acos(cos)
x = cos * db
h = Math.sin(theta) * db
dx = dx/dc
dy = dy/dc
c.x = a.x + x * dx + h * dy
c.y = a.y + x * dy - h * dx
end
# @private #/
def transform(n, x, y, k)
c=n.first_child
while(c) do
c.x += n.x
c.y += n.y
transform(c, x, y, k)
c=c.next_sibling
end
n.x = x + k * n.x
n.y = y + k * n.y
n.radius *= k
n.mid_angle=0 # Undefined on protovis
end
def pack_circle(nodes)
@x_min = Infinity
@x_max = -Infinity
@y_min = Infinity
@y_max = -Infinity
a=b=c=j=k=nil
# Create first node.
a = nodes[0];
a.x = -a.radius
a.y = 0
bound(a)
# Create second node. #/
if (nodes.size > 1)
b = nodes[1]
b.x = b.radius
b.y = 0
bound(b)
# Create third node and build chain.
if (nodes.size > 2)
c = nodes[2]
place(a, b, c)
bound(c)
insert(a, c)
a._p = c
insert(c, b)
b = a.n
# Now iterate through the rest.
i=3
while(i < nodes.size) do
c=nodes[i]
place(a, b, c)
# Search for the closest intersection. #/
isect = 0
s1 = 1
s2 = 1
j=b.n
while(j!=b) do
if (intersects(j, c))
isect=1
break
end
j=j.n
s1+=1
end
if isect==1
k=a._p
while(k!=j._p) do
if(intersects(k,c))
if(s2 < s1)
isect=-1
j=k
end
break
end
k=k._p
s2+=1
end
end
# Update node chain. #/
if (isect == 0)
insert(a, c)
b = c
bound(c)
elsif (isect > 0)
splice(a, j)
b = j
i-=1
elsif (isect < 0)
splice(j, b)
a = j
i-=1
end
i+=1
end
end
end
# Re-center the circles and return the encompassing radius. #/
cx = (@x_min + @x_max) / 2.0
cy = (@y_min + @y_max) / 2.0
cr = 0
nodes.each do |n|
n.x -= cx
n.y -= cy
cr = [cr, n.radius + Math.sqrt(n.x * n.x + n.y * n.y)].max
end
cr + @s.spacing
end
def build_implied(s)
return nil if hierarchy_build_implied(s)
@s=s
nodes = s.nodes
root = nodes[0]
radii(nodes)
# Recursively compute the layout. #/
root.x = 0
root.y = 0
root.radius = pack_tree(root)
w = self.width
h = self.height
k = 1.0 / [2.0 * root.radius / w, 2.0 * root.radius / h].max
transform(root, w / 2.0, h / 2.0, k)
end
end
end
end
|