1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
module Rubyvis
class Layout
# Alias for Rubyvis::Layout::Tree
def self.Tree
Rubyvis::Layout::Tree
end
# Implements a node-link tree diagram using the Reingold-Tilford "tidy"
# tree layout algorithm. The specific algorithm used by this layout is based on
# <a href="http://citeseer.ist.psu.edu/buchheim02improving.html">"Improving
# Walker's Algorithm to Run in Linear Time"</A> by C. Buchheim, M. Jünger
# & S. Leipert, Graph Drawing 2002. This layout supports both cartesian and
# radial orientations orientations for node-link diagrams.
#
# <p>The tree layout supports a "group" property, which if true causes siblings
# to be positioned closer together than unrelated nodes at the same depth. The
# layout can be configured using the <tt>depth</tt> and <tt>breadth</tt>
# properties, which control the increments in pixel space between nodes in both
# dimensions, similar to the indent layout.
#
# <p>For more details on how to use this layout, see
# Rubyvis::Layout::Hierarchy
class Tree < Hierarchy
@properties=Hierarchy.properties.dup
def initialize
super
end
##
# :attr: breadth
# The offset between siblings nodes; defaults to 15.
##
# :attr: depth
# The offset between parent and child nodes; defaults to 60.
#
##
# :attr: orient
# The orientation. The default orientation is "top", which means that the root
# node is placed on the top edge, leaf nodes appear at the bottom, and internal
# nodes are in-between. The following orientations are supported:<ul>
#
# <li>left - left-to-right.
# <li>right - right-to-left.
# <li>top - top-to-bottom.
# <li>bottom - bottom-to-top.
# <li>radial - radially, with the root at the center.</ul>
#
##
# :group:
# The sibling grouping, i.e., whether differentiating space is placed between
# sibling groups. The default is 1 (or true), causing sibling leaves to be
# separated by one breadth offset. Setting this to false (or 0) causes
# non-siblings to be adjacent.
attr_accessor_dsl :group, :breadth, :depth, :orient
# Default properties for tree layouts. The default orientation is "top",
# the default group parameter is 1, and the default breadth and depth
# offsets are 15 and 60 respectively.
def self.defaults
Rubyvis::Layout::Tree.new.mark_extend(Rubyvis::Layout::Hierarchy.defaults).
group(1).
breadth(15).
depth(60).
orient("top")
end
def first_walk(v)
l,r,a=nil,nil,nil
if (!v.first_child)
l= v.previous_sibling
v.prelim = l.prelim + distance(v.depth, true) if l
else
l = v.first_child
r = v.last_child
a = l # default ancestor
v.each_child {|c|
first_walk(c)
a = apportion(c, a)
}
execute_shifts(v)
midpoint = 0.5 * (l.prelim + r.prelim)
l = v.previous_sibling
if l
v.prelim = l.prelim + distance(v.depth, true)
v.mod = v.prelim - midpoint
else
v.prelim = midpoint
end
end
end
def second_walk(v,m,depth)
v.breadth = v.prelim + m
m += v.mod
v.each_child {|c|
second_walk(c, m, depth)
}
end
def apportion(v,a)
w = v.previous_sibling
if w
vip = v
vop = v
vim = w
vom = v.parent_node.first_child
sip = vip.mod
sop = vop.mod
sim = vim.mod
som = vom.mod
nr = next_right(vim)
nl = next_left(vip)
while (nr and nl) do
vim = nr
vip = nl
vom = next_left(vom)
vop = next_right(vop)
vop.ancestor = v
shift = (vim.prelim + sim) - (vip.prelim + sip) + distance(vim.depth, false)
if (shift > 0)
move_subtree(ancestor(vim, v, a), v, shift)
sip += shift
sop += shift
end
sim += vim.mod
sip += vip.mod
som += vom.mod
sop += vop.mod
nr = next_right(vim)
nl = next_left(vip)
end
if (nr and !next_right(vop))
vop.thread = nr
vop.mod += sim - sop
end
if (nl and !next_left(vom))
vom.thread = nl
vom.mod += sip - som
a = v
end
end
a
end
def next_left(v)
v.first_child ? v.first_child : v.thread
end
def next_right(v)
v.last_child ? v.last_child : v.thread
end
def move_subtree(wm, wp, shift)
subtrees = wp.number - wm.number
wp.change -= shift / subtrees.to_f
wp.shift += shift
wm.change += shift / subtrees.to_f
wp.prelim += shift
wp.mod += shift
end
def execute_shifts(v)
shift = 0
change = 0
c=v.last_child
while c
c.prelim += shift
c.mod += shift
change += c.change
shift += c.shift + change
c = c.previous_sibling
end
end
def ancestor(vim, v, a)
(vim.ancestor.parent_node == v.parent_node) ? vim.ancestor : a
end
def distance(depth, siblings)
(siblings ? 1 : (@_group + 1)).to_f / ((@_orient == "radial") ? depth : 1)
end
def mid_angle(n)
(@_orient == "radial") ? n.breadth.to_f / depth : 0;
end
#/** @private */
def x(n)
case @_orient
when "left"
n.depth;
when "right"
@_w - n.depth;
when "top"
n.breadth + @_w / 2.0
when "bottom"
n.breadth + @_w / 2.0
when "radial"
@_w / 2.0 + n.depth * Math.cos(mid_angle(n))
end
end
#/** @private */
def y(n)
case @_orient
when "left"
n.breadth + @_h / 2.0
when "right"
n.breadth + @_h / 2.0
when "top"
n.depth;
when "bottom"
@_h - n.depth
when "radial"
@_h / 2.0 + n.depth * Math.sin(mid_angle(n))
end
end
def build_implied(s)
return nil if hierarchy_build_implied(s)
@_nodes = s.nodes
@_orient = s.orient
@_depth = s.depth
@_breadth = s.breadth
@_group = s.group
@_w = s.width
@_h = s.height
root=@_nodes[0]
root.visit_after {|v,i|
v.ancestor = v
v.prelim = 0
v.mod = 0
v.change = 0
v.shift = 0
v.number = v.previous_sibling ? (v.previous_sibling.number + 1) : 0
v.depth = i
}
#/* Compute the layout using Buchheim et al.'s algorithm. */
first_walk(root)
second_walk(root, -root.prelim, 0)
root.visit_after {|v,i|
v.breadth *= breadth
v.depth *= depth
v.mid_angle = mid_angle(v)
v.x = x(v)
v.y = y(v)
v.mid_angle += Math::PI if (v.first_child)
v.breadth=nil
v.depth=nil
v.ancestor=nil
v.prelim=nil
v.mod=nil
v.change=nil
v.shift=nil
v.number=nil
v.thread=nil
}
end
end
end
end
|