File: treemap.rb

package info (click to toggle)
ruby-rubyvis 0.6.1%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 1,808 kB
  • ctags: 679
  • sloc: ruby: 11,114; makefile: 2
file content (359 lines) | stat: -rw-r--r-- 11,606 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
module Rubyvis
  class Layout
    # Alias for Rubyvis::Layout::Treemap
    def self.Treemap
      Rubyvis::Layout::Treemap
    end
  
    # Implements a space-filling rectangular layout, with the hierarchy
    # represented via containment. Treemaps represent nodes as boxes, with child
    # nodes placed within parent boxes. The size of each box is proportional 
    # to the size of the node in the tree. This particular algorithm is taken from Bruls,
    # D.M., C. Huizing, and J.J. van Wijk, <a
    # href="http://www.win.tue.nl/~vanwijk/stm.pdf">"Squarified Treemaps"</a> in
    # <i>Data Visualization 2000, Proceedings of the Joint Eurographics and IEEE
    # TCVG Sumposium on Visualization</i>, 2000, pp. 33-42.
    #
    # <p>The meaning of the exported mark prototypes changes slightly in the
    # space-filling implementation:<ul>
    #
    # <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Bar}. The node
    # data is populated with <tt>dx</tt> and <tt>dy</tt> attributes, in addition to
    # the standard <tt>x</tt> and <tt>y</tt> position attributes.
    #
    # <p><li><tt>leaf</tt> - for rendering leaf nodes only, with no fill or stroke
    # style by default; typically a Rubyvis::Panel or another layout!
    #
    # <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
    # in the arrangement of the space-filling nodes.
    #
    # <p><li><tt>label</tt> - for rendering node labels; typically a
    # Rubyvis::Label.
    #
    # </ul>For more details on how to use this layout, see
    # Rubyvis::Layout::Hierarchy.
    #
    class Treemap < Hierarchy
      @properties=Hierarchy.properties.dup
      def initialize
        super
        @size=lambda {|d| d.node_value.to_f}
        
        @node.stroke_style("#fff").
          fill_style("rgba(31, 119, 180, .25)").
          width(lambda {|n| n.dx}).
          height(lambda {|n| n.dy })
        
        @node_label.
          visible(lambda {|n| !n.first_child }).
          left(lambda {|n| n.x + (n.dx / 2.0) }).
          top(lambda {|n| n.y + (n.dy / 2.0) }).
          text_align("center").
          text_angle(lambda {|n| n.dx > n.dy ? 0 : -Math::PI / 2.0 })
      end
      
      def leaf
        m=Rubyvis::Mark.new.
        mark_extend(self.node).
        fill_style(nil).
        stroke_style(nil).
        visible(lambda {|n| !n.first_child })
        m.parent = self
        m
      end
      def link
        nil
      end
      
      ##
      # :attr: round
      # Whether node sizes should be rounded to integer values. This has a similar
      # effect to setting <tt>antialias(false)</tt> for node values, but allows the
      # treemap algorithm to accumulate error related to pixel rounding.
      #
      # @type boolean
      
      
      
      ##
      # :attr: padding_left
      # The left inset between parent add child in pixels. Defaults to 0.
      #
      # @type number
      # @see #padding
      
      
      
      ##
      # :attr: padding_rigth
      # The right inset between parent add child in pixels. Defaults to 0.
      #
      # @type number
      # @name pv.Layout.Treemap.prototype.paddingRight
      # @see #padding
      
      
      ##
      # :attr: padding_top
      # The top inset between parent and child in pixels. Defaults to 0.
      #
      # @type number
      # @name pv.Layout.Treemap.prototype.paddingTop
      # @see #padding
      
      
      ##
      # :attr: padding_bottom      
      # The bottom inset between parent and child in pixels. Defaults to 0.
      #
      # @type number
      # @name pv.Layout.Treemap.prototype.paddingBottom
      # @see #padding
      
      
      ##
      # :attr: mode      
      # The treemap algorithm. The default value is "squarify". The "slice-and-dice"
      # algorithm may also be used, which alternates between horizontal and vertical
      # slices for different depths. In addition, the "slice" and "dice" algorithms
      # may be specified explicitly to control whether horizontal or vertical slices
      # are used, which may be useful for nested treemap layouts.
      #
      # @type string
      # @name pv.Layout.Treemap.prototype.mode
      # @see <a
      # href="ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/2001-06html/2001-06.pdf"
      # >"Ordered Treemap Layouts"</a> by B. Shneiderman &amp; M. Wattenberg, IEEE
      # InfoVis 2001.
      
      
      ##
      # :attr: order      
      # The sibling node order. A <tt>null</tt> value means to use the sibling order
      # specified by the nodes property as-is; "reverse" will reverse the given
      # order. The default value "ascending" will sort siblings in ascending order of
      # size, while "descending" will do the reverse. For sorting based on data
      # attributes other than size, use the default <tt>null</tt> for the order
      # property, and sort the nodes beforehand using the {@link pv.Dom} operator.
      #
      # @type string
      # @name pv.Layout.Treemap.prototype.order
      

      
      
      attr_accessor_dsl :round, :padding_left, :padding_right, :padding_top, :padding_bottom, :mode, :order
      
      # Default propertiess for treemap layouts. The default mode is "squarify" and the default order is "ascending".
      def self.defaults
        Rubyvis::Layout::Treemap.new.mark_extend(Rubyvis::Layout::Hierarchy.defaults).
        mode("squarify"). # squarify, slice-and-dice, slice, dice
        order('ascending') # ascending, descending, reverse, nil
      end
      
      # Alias for setting the left, right, top and bottom padding properties
      # simultaneously.
      def padding(n)
        padding_left(n).padding_right(n).padding_top(n).padding_bottom(n)
      end
      def _size(d)
        @size.call(d)
      end
     
      ##
      # Specifies the sizing function. By default, the size function uses the
      # +node_value+ attribute of nodes as a numeric value: 
      # <p>The sizing function is invoked for each leaf node in the tree, per the
      # <tt>nodes</tt> property. For example, if the tree data structure represents a
      # file system, with files as leaf nodes, and each file has a <tt>bytes</tt>
      # attribute, you can specify a size function as:
      #
      # <pre>    .size(function(d) d.bytes)</pre>
      #
      # @param {function} f the new sizing function.
      # @returns {pv.Layout.Treemap} this.
            
      def size(f)
        @size=Rubyvis.functor(f)
        self
      end
      
      
      def build_implied(s)
        return nil if hierarchy_build_implied(s)
        
        that=self
        nodes = s.nodes
        root = nodes[0]
        stack = Mark.stack
        
        left = s.padding_left
        right = s.padding_right
        top = s.padding_top
        bottom = s.padding_bottom
        left||=0
        right||=0
        top||=0
        bottom||=0
        size=lambda {|n| n.size}
        round = s.round ? 
          lambda {|a| a.round } : 
          lambda {|a| a.to_f}
        mode = s.mode
        
        slice=lambda { |row, sum, horizontal, x, y, w, h|
          # puts "slice:#{sum},#{horizontal},#{x},#{y},#{w},#{h}"
          d=0
          row.size.times {|i|
            n=row[i]
            # puts "i:#{i},d:#{d}"
            if horizontal
              n.x = x + d
              n.y = y
              d += n.dx = round.call(w * n.size / sum.to_f)
              n.dy = h
            else
              n.x = x
              n.y = y + d
              n.dx = w
              d += n.dy = round.call(h * n.size / sum.to_f)
            end
            # puts "n.x:#{n.x}, n.y:#{n.y}, n.dx:#{n.dx}, n.dy:#{n.dy}"
          }
          
         
          if (row.last)  # correct on-axis rounding error
            n=row.last
            if (horizontal) 
              n.dx += w - d
            else 
              n.dy += h - d
            end
          end
        }
        
        ratio=lambda {|row, l|
          rmax = -Infinity
          rmin = Infinity
          s = 0
          row.each_with_index {|v,i|
            r = v.size
            rmin = r if (r < rmin)
            rmax = r if (r > rmax)
            s += r
          }
          s = s * s
          l = l * l
          [l * rmax / s.to_f, s.to_f / (l * rmin)].max
        }
        
        layout=lambda {|n,i| 
          x = n.x + left
          y = n.y + top
          w = n.dx - left - right
          h = n.dy - top - bottom
          
          # puts "Layout: '#{n.node_name}', #{n.x}, #{n.y}, #{n.dx}, #{n.dy}"
          #/* Assume squarify by default. */
          if (mode != "squarify")
            slice.call(n.child_nodes, n.size, ( mode == "slice" ? true : mode == "dice" ? false : (i & 1)!=0), x, y, w, h)
          else
            row = []
            mink = Infinity
            l = [w,h].min
            k = w * h / n.size.to_f
            #/* Abort if the size is nonpositive. */
            
            if (n.size > 0) 
              #/* Scale the sizes to fill the current subregion. */
              n.visit_before {|n1,i1| n1.size *= k }
              
              #/** @private Position the specified nodes along one dimension. */
              position=lambda {|row1| 
                horizontal = w == l
                sum = Rubyvis.sum(row1, size)
                r = l>0 ? round.call(sum / l.to_f) : 0
                slice.call(row1, sum, horizontal, x, y, horizontal ? w : r, horizontal ? r : h)
                if horizontal 
                  y += r
                  h -= r
                else
                  x += r
                  w -= r
                end
                l = [w, h].min
                horizontal
              }
              
              children = n.child_nodes.dup # copy
              while (children.size>0) do
                child = children[children.size - 1]
                if (child.size==0) 
                  children.pop
                  next
                end
                row.push(child)
                
                k = ratio.call(row, l)
                
                if (k <= mink) 
                  children.pop
                  mink = k
                else 
                  row.pop
                  position.call(row)
                  row.clear
                  mink = Infinity
                end
              end
              
              #/* correct off-axis rounding error */
              
              if (position.call(row))
                row.each {|v|
                  v.dy+=h
                }
              else
                row.each {|v|
                  v.dx+=w
                }
              end              
            end
          end
        }
        
               
        stack.unshift(nil)
        root.visit_after {|nn,i|
          nn.depth = i
          nn.x = nn.y = nn.dx = nn.dy = 0
          if nn.first_child
            nn.size=Rubyvis.sum(nn.child_nodes, lambda {|v| v.size})
          else
            stack[0]=nn
            nn.size=that._size(stack[0])
          end
        }
        stack.shift()
        
        #/* Sort. */
        
        case s.order
          when 'ascending'
            root.sort(lambda {|a,b| a.size<=>b.size})
          when 'descending'
            root.sort(lambda {|a,b| b.size<=>a.size})
          when 'reverse'
            root.reverse
        end
        # /* Recursively compute the layout. */
        root.x = 0;
        root.y = 0;
        root.dx = s.width
        root.dy = s.height
        root.visit_before {|n,i| layout.call(n,i)}
      end
      
    end
  end
end