1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
module Rubyvis
# Represents an ordinal scale. <style
# type="text/css">sub{line-height:0}</style> An ordinal scale represents a
# pairwise mapping from <i>n</i> discrete values in the input domain to
# <i>n</i> discrete values in the output range. For example, an ordinal scale
# might map a domain of species ["setosa", "versicolor", "virginica"] to colors
# ["red", "green", "blue"]. Thus, saying
#
# .fill_style(lambda {|d|
# case (d.species)
# when "setosa"
# "red"
# when "versicolor"
# "green"
# when "virginica"
# "blue"
# }
# )
#
# is equivalent to
#
# .fill_style(Rubyvis::Scale.ordinal("setosa", "versicolor", "virginica")
# .range("red", "green", "blue")
# .by(lambda {|d| d.species}))</pre>
#
# If the mapping from species to color does not need to be specified
# explicitly, the domain can be omitted. In this case it will be inferred
# lazily from the data:
#
# .fill_style(Rubyvis.colors("red", "green", "blue")
# .by(lambda {|d| d.species}))</pre>
#
# When the domain is inferred, the first time the scale is invoked, the first
# element from the range will be returned. Subsequent calls with unique values
# will return subsequent elements from the range. If the inferred domain grows
# larger than the range, range values will be reused. However, it is strongly
# recommended that the domain and the range contain the same number of
# elements.
#
# A range can be discretized from a continuous interval (e.g., for pixel
# positioning) by using split, split_flush or
# split_banded after the domain has been set. For example, if
# <tt>states</tt> is an array of the fifty U.S. state names, the state name can
# be encoded in the left position:
#
# .left(Rubyvis::Scale.ordinal(states)
# .split(0, 640)
# .by(lambda {|d| d.state}))
#
# N.B.: ordinal scales are not invertible (at least not yet), since the
# domain and range and discontinuous. A workaround is to use a linear scale.
class Scale::Ordinal
# range band, after use split_banded
# equivalen to protovis scale.range().band
attr_reader :range_band
# Returns an ordinal scale for the specified domain. The arguments to this
# constructor are optional, and equivalent to calling domain
def initialize(*args)
@d=[] # domain
@i={}
@r=[]
@range_band=nil
@band=0
domain(*args)
end
# Return
# lambda {|d| scale_object.scale(d)}
# Useful as value on dynamic properties
# scale=Rubyvis.ordinal("red","blue","green")
# bar.fill_style(scale)
# is the same as
# bar.fill_style(lambda {|x| scale.scale(x)})
def to_proc
that=self
lambda {|*args| args[0] ? that.scale(args[0]) : nil }
end
def scale(x)
if @i[x].nil?
@d.push(x)
@i[x]=@d.size-1
end
@r[@i[x] % @r.size]
end
alias :[] :scale
# Sets or gets the input domain. This method can be invoked several ways:
#
# <p>1. <tt>domain(values...)</tt>
#
# <p>Specifying the domain as a series of values is the most explicit and
# recommended approach. However, if the domain values are derived from data,
# you may find the second method more appropriate.
#
# <p>2. <tt>domain(array, f)</tt>
#
# <p>Rather than enumerating the domain values as explicit arguments to this
# method, you can specify a single argument of an array. In addition, you can
# specify an optional accessor function to extract the domain values from the
# array.
#
# <p>3. <tt>domain()</tt>
#
# <p>Invoking the <tt>domain</tt> method with no arguments returns the
# current domain as an array.
def domain(*arguments)
array, f=arguments[0],arguments[1]
if(arguments.size>0)
array= (array.is_a? Array) ? ((arguments.size>1) ? Rubyvis.map(array,f) : array) : arguments.dup
@d=array.uniq
@i=Rubyvis.numerate(@d)
return self
end
@d
end
# Sets the range from the given continuous interval. The interval [<i>
# min</i>, <i>max</i>] is subdivided into <i>n</i> equispaced bands,
# where <i>n</i> is the number of (unique) values in the domain. The first
# and last band are offset from the edge of the range by the distance between bands.
#
# <p>The band width argument, <tt>band</tt>, is typically in the range [0, 1]
# and defaults to 1. This fraction corresponds to the amount of space in the
# range to allocate to the bands, as opposed to padding. A value of 0.5
# means that the band width will be equal to the padding width.
# The computed absolute band width can be retrieved from the range as
# <tt>scale.range_band</tt>.
#
# <p>If the band width argument is negative, this method will allocate bands
# of a <i>fixed</i> width <tt>-band</tt>, rather than a relative fraction of
# the available space.
#
# <p>Tip: to inset the bands by a fixed amount <tt>p</tt>, specify a minimum
# value of <tt>min + p</tt> (or simply <tt>p</tt>, if <tt>min</tt> is
# 0). Then set the mark width to <tt>scale.range_band - p</tt>.
#
# <p>This method must be called <i>after</i> the domain is set.
def split_banded(*arguments) # :args: (min,max,band=1)
min,max,band=arguments
band=1 if (arguments.size < 3)
if (band < 0)
n = self.domain().size
total = -band * n
remaining = max - min - total
padding = remaining / (n + 1).to_f
@r = Rubyvis.range(min + padding, max, padding - band);
@range_band = -band;
else
step = (max - min) / (self.domain().size + (1 - band))
@r = Rubyvis.range(min + step * (1 - band), max, step);
@range_band = step * band;
end
return self
end
def range(*arguments)
array, f = arguments[0],arguments[1]
if(arguments.size>0)
@r=(array.is_a? Array) ? ((arguments.size>1) ? array.map(&f) : array) : arguments.dup
if @r[0].is_a? String
@r=@r.map {|i| Rubyvis.color(i)}
end
return self
end
@r
end
# Sets the range from the given continuous interval. The interval [<i>
# min</i>, <i>max</i>] is subdivided into <i>n</i> equispaced points,
# where <i>n</i> is the number of (unique) values in the domain. The first
# and last point are offset from the edge of the range by half the distance
# between points.
#
# <p>This method must be called <i>after</i> the domain is set.
def split(min,max)
step=(max-min).quo(domain().size)
@r=Rubyvis.range(min+step.quo(2),max,step)
self
end
# Sets the range from the given continuous interval. The interval
# [<i>min</i>, <i>max</i>] is subdivided into <i>n</i> equispaced points,
# where <i>n</i> is the number of (unique) values in the domain. The first
# and last point are exactly on the edge of the range.
#
# <p>This method must be called <i>after</i> the domain is set.
#
# * @param {number} min minimum value of the output range.
# * @param {number} max maximum value of the output range.
# * @returns {pv.Scale.ordinal} <tt>this</tt>.
# * @see Ordinal.split
def split_flush(min,max)
n = self.domain().size
step = (max - min) / (n - 1).to_f
@r = (n == 1) ? [(min + max) / 2.0] : Rubyvis.range(min, max + step/2.0, step)
self
end
def by(f)
that=self
lambda {|*args|
that.scale(f.js_apply(self,args))
}
end
end
end
|