File: quantitative.rb

package info (click to toggle)
ruby-rubyvis 0.6.1%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 1,808 kB
  • ctags: 679
  • sloc: ruby: 11,114; makefile: 2
file content (440 lines) | stat: -rw-r--r-- 15,470 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
module Rubyvis
  # Represents an abstract quantitative scale; a function that performs a
  # numeric transformation. This class is typically not used directly; see one of
  # the quantitative scale implementations (linear, log, root, etc.)
  # instead. <style type="text/css">sub{line-height:0}</style> A quantitative
  # scale represents a 1-dimensional transformation from a numeric domain of
  # input data [<i>d<sub>0</sub></i>, <i>d<sub>1</sub></i>] to a numeric range of
  # pixels [<i>r<sub>0</sub></i>, <i>r<sub>1</sub></i>]. In addition to
  # readability, scales offer several useful features:
  #
  # <p>1. The range can be expressed in colors, rather than pixels. For example:
  #
  #   .fill_style(Scale.linear(0, 100).range("red", "green"))
  #
  # will fill the marks "red" on an input value of 0, "green" on an input value
  # of 100, and some color in-between for intermediate values.
  #
  # <p>2. The domain and range can be subdivided for a non-uniform
  # transformation. For example, you may want a diverging color scale that is
  # increasingly red for negative values, and increasingly green for positive
  # values:
  #
  #   .fill_style(Scale.linear(-1, 0, 1).range("red", "white", "green"))</pre>
  #
  # The domain can be specified as a series of <i>n</i> monotonically-increasing
  # values; the range must also be specified as <i>n</i> values, resulting in
  # <i>n - 1</i> contiguous linear scales.
  #
  # <p>3. Quantitative scales can be inverted for interaction. The
  # invert() method takes a value in the output range, and returns the
  # corresponding value in the input domain. This is frequently used to convert
  # the mouse location (see Mark#mouse) to a value in the input
  # domain. Note that inversion is only supported for numeric ranges, and not
  # colors.
  #
  # <p>4. A scale can be queried for reasonable "tick" values. The ticks()
  # method provides a convenient way to get a series of evenly-spaced rounded
  # values in the input domain. Frequently these are used in conjunction with
  # Rule to display tick marks or grid lines.
  #
  # <p>5. A scale can be "niced" to extend the domain to suitable rounded
  # numbers. If the minimum and maximum of the domain are messy because they are
  # derived from data, you can use nice() to round these values down and
  # up to even numbers.
  #
  # @see Scale.linear
  # @see Scale.log
  # @see Scale.root
  class Scale::Quantitative
    include Rubyvis::Scale
    attr_reader :l
    # Returns a default quantitative, linear, scale for the specified domain. The
    # arguments to this constructor are optional, and equivalent to calling
    # domain. The default domain and range are [0,1].
    #
    # This constructor is typically not used directly; see one of the
    # quantitative scale implementations instead.
    # @param {number...} domain... optional domain values.
    def initialize(*args)
      @d=[0,1] # domain
      @l=[0,1] # transformed domain
      @r=[0,1] # default range
      @i=[Rubyvis.identity] # default interpolator
      @type=:to_f # default type
      @n=false
      @f=Rubyvis.identity # default forward transformation
      @g=Rubyvis.identity
      @tick_format=lambda {|x|
        if x.is_a? Numeric
          ((x.to_f-x.to_i==0) ? x.to_i : x.to_f).to_s
        else
          ""
        end
      }
      domain(*args)
    end
    
    # Deprecated
    def new_date(x=nil) # :nodoc:
      x.nil? ? Time.new() : Time.at(x)
    end
    # Return 
    #   lambda {|d| scale_object.scale(d)}
    # Useful as value on dynamic properties
    #   scale=Rubyvis.linear(0,1000)
    #   bar.width(scale)
    # is the same as
    #   bar.width(lambda {|x| scale.scale(x)})
    def to_proc
      that=self
      lambda {|*args|  args[0] ? that.scale(args[0]) : nil }
    end
    # Transform value +x+ according to domain and range
    def scale(x)
      return nil if x.nil?
      x=x.to_f
      j=Rubyvis.search(@d, x)
      j=-j-2 if (j<0)
      j=[0,[@i.size-1,j].min].max
      # p @l
      # puts "Primero #{j}: #{@f.call(x) - @l[j]}"
      # puts "Segundo #{(@l[j + 1] - @l[j])}"
      @i[j].call((@f.call(x) - @l[j]) .quo(@l[j + 1] - @l[j]));
    end
    alias :[] :scale      
    def transform(forward, inverse)
      @f=lambda {|x| @n ? -forward.call(-x) : forward.call(x); }
      @g=lambda {|y| @n ? -inverse.call(-y) : inverse.call(y); }
      @l=@d.map{|v| @f.call(v)}
      self
    end
    private :transform
    # Sets or gets the input domain. This method can be invoked several ways:
    #
    # <p>1. <tt>domain(min, ..., max)</tt>
    #
    # <p>Specifying the domain as a series of numbers is the most explicit and
    # recommended approach. Most commonly, two numbers are specified: the minimum
    # and maximum value. However, for a diverging scale, or other subdivided
    # non-uniform scales, multiple values can be specified. Values can be derived
    # from data using Rubyvis.min and Rubyvis.max. For example:
    #
    #   .domain(0, Rubyvis.max(array))
    #
    # An alternative method for deriving minimum and maximum values from data
    # follows.
    #
    # <p>2. <tt>domain(array, minf, maxf)</tt>
    #
    # <p>When both the minimum and maximum value are derived from data, the
    # arguments to the <tt>domain</tt> method can be specified as the array of
    # data, followed by zero, one or two accessor functions. For example, if the
    # array of data is just an array of numbers:
    #
    #   .domain(array)
    #
    # On the other hand, if the array elements are objects representing stock
    # values per day, and the domain should consider the stock's daily low and
    # daily high:
    #
    #   .domain(array, lambda {|d|  d.low}, lambda {|d| d.high})
    #
    # The first method of setting the domain is preferred because it is more
    # explicit; setting the domain using this second method should be used only
    # if brevity is required.
    #
    # <p>3. <tt>domain()</tt>
    #
    # <p>Invoking the <tt>domain</tt> method with no arguments returns the
    # current domain as an array of numbers.
    def domain(*arguments)
      array,min,max=arguments
      o=nil
      if (arguments.size>0)
        if array.is_a? Array 
          min = Rubyvis.identity if (arguments.size < 2)
          max = min if (arguments.size < 3)
          o = [array[0]].min if array.size>0
          @d = array.size>0 ? [Rubyvis.min(array, min), Rubyvis.max(array, max)] : []
        else 
          o = array
          @d = arguments.map {|i| i.to_f}
        end
        
        if !@d.size 
          @d = [-Infinity, Infinity];
        elsif (@d.size == 1) 
          @d = [@d.first, @d.first]
        end
        
        @n = (@d.first.to_f<0 or @d.last.to_f<0)
        @l=@d.map{|v| @f.call(v)}
        
        @type = (o.is_a? Time) ? :time : :number;
        return self
      end
      # TODO: Fix this.
      @d.map{|v| 
        case @type
        when :number
          v.to_f
        when :time
          Time.at(v)
        else 
          v
        end
      }
    end
    
    # Sets or gets the output range. This method can be invoked several ways:
    #
    # <p>1. <tt>range(min, ..., max)</tt>
    #
    # <p>The range may be specified as a series of numbers or colors. Most
    # commonly, two numbers are specified: the minimum and maximum pixel values.
    # For a color scale, values may be specified as {@link Rubyvis.Color}s or
    # equivalent strings. For a diverging scale, or other subdivided non-uniform
    # scales, multiple values can be specified. For example:
    #
    #   .range("red", "white", "green")
    #
    # <p>Currently, only numbers and colors are supported as range values. The
    # number of range values must exactly match the number of domain values, or
    # the behavior of the scale is undefined.
    #
    # <p>2. <tt>range()</tt>
    #
    # <p>Invoking the <tt>range</tt> method with no arguments returns the current
    # range as an array of numbers or colors.
    # :call-seq:
    #   range(min,...,max)
    #   range()
    def range(*arguments)
      if (arguments.size>0) 
        @r = arguments.dup
        if (@r.size==0)
          @r = [-Infinity, Infinity];
        elsif (@r.size == 1)
          @r = [@r[0], @r[0]]
        end
        @i=(@r.size-1).times.map do |j|
          Rubyvis::Scale.interpolator(@r[j], @r[j + 1]);
        end
        return self
      end
      @r
    end
    
    def invert(y)
      j=Rubyvis.search(@r, y)
      j=-j-2 if j<0
      j = [0, [@i.size - 1, j].min].max
      
      val=@g.call(@l[j] + (y - @r[j]).quo(@r[j + 1] - @r[j]) * (@l[j + 1] - @l[j]))
      @type==:time ? Time.at(val) : val
    end
    
    def type(v=nil)
      return @type if v.nil?
      case @type
        when Numeric
          v.to_f
        when Date
          raise "Not implemented yet"
      end
    end
    def ticks_floor(d,prec) # :nodoc:
      dfloor=d
      case(prec) 
        when 31536e6, :month
          dfloor = Time.utc(d.year,1,d.day,d.hour,d.min,d.sec)
        when 2592e6, :month_day
          dfloor = Time.utc(d.year,d.month,1,d.hour,d.min,d.sec)
        when 6048e5, :week_day
          dfloor = dfloor - d.wday*864e2 # TODO
        when 864e5, :hour
          dfloor = Time.utc(d.year,d.month,d.day,0,d.min,d.sec)
        when 36e5, :minute
          dfloor = Time.utc(d.year,d.month,d.day,d.hour,0,d.sec)
        when 6e4, :second
          dfloor = Time.utc(d.year,d.month,d.day,d.hour,d.min,0)
        when 1e3
          # do nothing
      end
      return dfloor
    end
    
    private :ticks_floor
    
    def to_date(d) # :nodoc:
      Time.utc(*d)
    end
    # Returns an array of evenly-spaced, suitably-rounded values in the input
    # domain. This method attempts to return between 5 and 10 tick values. These
    # values are frequently used in conjunction with Rule to display
    # tick marks or grid lines.
    #
    # If start and end of domain are the same, returns only one tick value
    # @todo: fix for dates and n>10
    def ticks(m=nil) # :args: (number_of_ticks=nil)
      start = @d.first
      _end = @d.last
      return [start] if start==_end
      reverse = _end < start
      min = reverse ? _end : start
      max = reverse ? start : _end
      span = max - min
      # Special case: empty, invalid or infinite span.
      if (!span or (span.is_a? Float and span.infinite?)) 
        @tick_format= Rubyvis.Format.date("%x") if (@type == newDate) 
        return [type(min)];
      end
      
      #/* Special case: dates. */
      if (@type == :time) 
      #/* Floor the date d given the precision p. */
      precision, format, increment, step = 1,1,1,1
      if (span >= 3 * 31536e6 / 1000.0) 
        precision = 31536e6
        format = "%Y"
        increment = lambda {|d|  Time.at(d.to_f+(step*365*24*60*60)) }
      elsif (span >= 3 * 2592e6 / 1000.0) 
        precision = 2592e6;
        format = "%m/%Y";
        increment = lambda {|d| Time.at(d.to_f+(step*30*24*60*60)) }
      elsif (span >= 3 * 6048e5 / 1000.0) 
        precision = 6048e5;
        format = "%m/%d";
        increment = lambda {|d| Time.at(d.to_f+(step*7*24*60*60)) }
      elsif (span >= 3 * 864e5 / 1000.0) 
        precision = 864e5;
        format = "%m/%d";
        increment = lambda {|d| Time.at(d.to_f+(step*24*60*60)) }
      elsif (span >= 3 * 36e5 / 1000.0) 
        precision = 36e5;
        format = "%I:%M %p";
        increment = lambda {|d| Time.at(d.to_f+(step*60*60)) }
      elsif (span >= 3 * 6e4 / 1000.0 ) 
        precision = 6e4;
        format = "%I:%M %p";
        increment = lambda {|d| Time.at(d.to_f+(step*60)) }
      elsif (span >= 3 * 1e3 / 1000.0) 
        precision = 1e3;
        format = "%I:%M:%S";
        increment = lambda {|d|  Time.at(d.to_f+(step)) }
      else 
        precision = 1;
        format = "%S.%Qs";
        increment = lambda {|d|  Time.at(d.to_f+(step/1000.0)) }
      end
      @tick_format = Rubyvis.Format.date(format);
      date = Time.at(min.to_f)
      dates = []
      date = ticks_floor(date,precision)
      # If we'd generate too many ticks, skip some!.
      n = span / (precision/1000.0)
      # FIX FROM HERE
      if (n > 10) 
        case (precision) 
        when 36e5
          step = (n > 20) ? 6 : 3;
          date.setHours(Math.floor(date.getHours() / step) * step);
        when 2592e6
          step = 3; # seasons
          ar=date.to_a
          ar[4]=(date.month/step.to_f).floor*step
          date=to_date(ar)
        when 6e4
          step = (n > 30) ? 15 : ((n > 15) ? 10 : 5);
          date.setMinutes(Math.floor(date.getMinutes() / step) * step);
        when 1e3
          step = (n > 90) ? 15 : ((n > 60) ? 10 : 5);
          date.setSeconds(Math.floor(date.getSeconds() / step) * step);
        when 1
          step = (n > 1000) ? 250 : ((n > 200) ? 100 : ((n > 100) ? 50 : ((n > 50) ? 25 : 5)));
          date.setMilliseconds(Math.floor(date.getMilliseconds() / step) * step);
        else
          step = Rubyvis.log_ceil(n / 15, 10);
          if (n / step < 2) 
            step =step.quo(5)
          elsif (n / step < 5)
            step = step.quo(2)
          end
          date.setFullYear((date.getFullYear().quo(step)).floor * step);
        end
      end
      # END FIX
        while (true)
          date=increment.call(date)
          break if (date.to_f > max.to_f)
          dates.push(date)
        end
        return reverse ? dates.reverse() : dates;
      end
      
      # Normal case: numbers. 
      m||= 10
      
      step = Rubyvis.log_floor(span.quo(m), 10)
      err = m.quo(span.quo(step))
      if (err <= 0.15)
        step = step*10
      elsif (err <= 0.35)
        step = step*5
      elsif (err <= 0.75)
        step = step*2
      end
      start = (min.quo(step)).ceil * step
      _end = (max.quo(step)).floor * step
      
      @tick_format= Rubyvis.Format.number.fraction_digits([0, -(Rubyvis.log(step, 10) + 0.01).floor].max).to_proc
      
      ticks = Rubyvis.range(start, _end + step, step)
      
      return reverse ? ticks.reverse() : ticks;
    end
    
    # Returns a Proc that formats the specified tick value using the appropriate precision, based on
    # the step interval between tick marks. If ticks() has not been called,
    # the argument is converted to a string, but no formatting is applied.
    #   scale.tick_format.call(value)
    #
    def tick_format
      @tick_format
    end
    
    # "Nices" this scale, extending the bounds of the input domain to
    # evenly-rounded values. Nicing is useful if the domain is computed
    # dynamically from data, and may be irregular. For example, given a domain of
    # [0.20147987687960267, 0.996679553296417], a call to <tt>nice()</tt> might
    # extend the domain to [0.2, 1].
    #
    # This method must be invoked each time after setting the domain.
    def nice
      return self if @d.size!=2
      start=@d.first
      _end=@d[@d.size-1]
      reverse=_end<start
      min=reverse ? _end : start
      max = reverse ? start : _end
      span=max-min
      
      return self if(!span or span.infinite?)
      
      step=10**((Math::log(span).quo(Math::log(10))).round-1)
      @d=[(min.quo(step)).floor*step, (max.quo(step)).ceil*step]
      @d.reverse if  reverse
      @l=@d.map {|v| @f.call(v)}
      self
    end
    def by(f)
      that=self
      lambda {|*args|
        that.scale(f.js_apply(self,args))
      }
    end
    
    
  end
end