1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
module Rubyvis
# Represents an abstract quantitative scale; a function that performs a
# numeric transformation. This class is typically not used directly; see one of
# the quantitative scale implementations (linear, log, root, etc.)
# instead. <style type="text/css">sub{line-height:0}</style> A quantitative
# scale represents a 1-dimensional transformation from a numeric domain of
# input data [<i>d<sub>0</sub></i>, <i>d<sub>1</sub></i>] to a numeric range of
# pixels [<i>r<sub>0</sub></i>, <i>r<sub>1</sub></i>]. In addition to
# readability, scales offer several useful features:
#
# <p>1. The range can be expressed in colors, rather than pixels. For example:
#
# .fill_style(Scale.linear(0, 100).range("red", "green"))
#
# will fill the marks "red" on an input value of 0, "green" on an input value
# of 100, and some color in-between for intermediate values.
#
# <p>2. The domain and range can be subdivided for a non-uniform
# transformation. For example, you may want a diverging color scale that is
# increasingly red for negative values, and increasingly green for positive
# values:
#
# .fill_style(Scale.linear(-1, 0, 1).range("red", "white", "green"))</pre>
#
# The domain can be specified as a series of <i>n</i> monotonically-increasing
# values; the range must also be specified as <i>n</i> values, resulting in
# <i>n - 1</i> contiguous linear scales.
#
# <p>3. Quantitative scales can be inverted for interaction. The
# invert() method takes a value in the output range, and returns the
# corresponding value in the input domain. This is frequently used to convert
# the mouse location (see Mark#mouse) to a value in the input
# domain. Note that inversion is only supported for numeric ranges, and not
# colors.
#
# <p>4. A scale can be queried for reasonable "tick" values. The ticks()
# method provides a convenient way to get a series of evenly-spaced rounded
# values in the input domain. Frequently these are used in conjunction with
# Rule to display tick marks or grid lines.
#
# <p>5. A scale can be "niced" to extend the domain to suitable rounded
# numbers. If the minimum and maximum of the domain are messy because they are
# derived from data, you can use nice() to round these values down and
# up to even numbers.
#
# @see Scale.linear
# @see Scale.log
# @see Scale.root
class Scale::Quantitative
include Rubyvis::Scale
attr_reader :l
# Returns a default quantitative, linear, scale for the specified domain. The
# arguments to this constructor are optional, and equivalent to calling
# domain. The default domain and range are [0,1].
#
# This constructor is typically not used directly; see one of the
# quantitative scale implementations instead.
# @param {number...} domain... optional domain values.
def initialize(*args)
@d=[0,1] # domain
@l=[0,1] # transformed domain
@r=[0,1] # default range
@i=[Rubyvis.identity] # default interpolator
@type=:to_f # default type
@n=false
@f=Rubyvis.identity # default forward transformation
@g=Rubyvis.identity
@tick_format=lambda {|x|
if x.is_a? Numeric
((x.to_f-x.to_i==0) ? x.to_i : x.to_f).to_s
else
""
end
}
domain(*args)
end
# Deprecated
def new_date(x=nil) # :nodoc:
x.nil? ? Time.new() : Time.at(x)
end
# Return
# lambda {|d| scale_object.scale(d)}
# Useful as value on dynamic properties
# scale=Rubyvis.linear(0,1000)
# bar.width(scale)
# is the same as
# bar.width(lambda {|x| scale.scale(x)})
def to_proc
that=self
lambda {|*args| args[0] ? that.scale(args[0]) : nil }
end
# Transform value +x+ according to domain and range
def scale(x)
return nil if x.nil?
x=x.to_f
j=Rubyvis.search(@d, x)
j=-j-2 if (j<0)
j=[0,[@i.size-1,j].min].max
# p @l
# puts "Primero #{j}: #{@f.call(x) - @l[j]}"
# puts "Segundo #{(@l[j + 1] - @l[j])}"
@i[j].call((@f.call(x) - @l[j]) .quo(@l[j + 1] - @l[j]));
end
alias :[] :scale
def transform(forward, inverse)
@f=lambda {|x| @n ? -forward.call(-x) : forward.call(x); }
@g=lambda {|y| @n ? -inverse.call(-y) : inverse.call(y); }
@l=@d.map{|v| @f.call(v)}
self
end
private :transform
# Sets or gets the input domain. This method can be invoked several ways:
#
# <p>1. <tt>domain(min, ..., max)</tt>
#
# <p>Specifying the domain as a series of numbers is the most explicit and
# recommended approach. Most commonly, two numbers are specified: the minimum
# and maximum value. However, for a diverging scale, or other subdivided
# non-uniform scales, multiple values can be specified. Values can be derived
# from data using Rubyvis.min and Rubyvis.max. For example:
#
# .domain(0, Rubyvis.max(array))
#
# An alternative method for deriving minimum and maximum values from data
# follows.
#
# <p>2. <tt>domain(array, minf, maxf)</tt>
#
# <p>When both the minimum and maximum value are derived from data, the
# arguments to the <tt>domain</tt> method can be specified as the array of
# data, followed by zero, one or two accessor functions. For example, if the
# array of data is just an array of numbers:
#
# .domain(array)
#
# On the other hand, if the array elements are objects representing stock
# values per day, and the domain should consider the stock's daily low and
# daily high:
#
# .domain(array, lambda {|d| d.low}, lambda {|d| d.high})
#
# The first method of setting the domain is preferred because it is more
# explicit; setting the domain using this second method should be used only
# if brevity is required.
#
# <p>3. <tt>domain()</tt>
#
# <p>Invoking the <tt>domain</tt> method with no arguments returns the
# current domain as an array of numbers.
def domain(*arguments)
array,min,max=arguments
o=nil
if (arguments.size>0)
if array.is_a? Array
min = Rubyvis.identity if (arguments.size < 2)
max = min if (arguments.size < 3)
o = [array[0]].min if array.size>0
@d = array.size>0 ? [Rubyvis.min(array, min), Rubyvis.max(array, max)] : []
else
o = array
@d = arguments.map {|i| i.to_f}
end
if !@d.size
@d = [-Infinity, Infinity];
elsif (@d.size == 1)
@d = [@d.first, @d.first]
end
@n = (@d.first.to_f<0 or @d.last.to_f<0)
@l=@d.map{|v| @f.call(v)}
@type = (o.is_a? Time) ? :time : :number;
return self
end
# TODO: Fix this.
@d.map{|v|
case @type
when :number
v.to_f
when :time
Time.at(v)
else
v
end
}
end
# Sets or gets the output range. This method can be invoked several ways:
#
# <p>1. <tt>range(min, ..., max)</tt>
#
# <p>The range may be specified as a series of numbers or colors. Most
# commonly, two numbers are specified: the minimum and maximum pixel values.
# For a color scale, values may be specified as {@link Rubyvis.Color}s or
# equivalent strings. For a diverging scale, or other subdivided non-uniform
# scales, multiple values can be specified. For example:
#
# .range("red", "white", "green")
#
# <p>Currently, only numbers and colors are supported as range values. The
# number of range values must exactly match the number of domain values, or
# the behavior of the scale is undefined.
#
# <p>2. <tt>range()</tt>
#
# <p>Invoking the <tt>range</tt> method with no arguments returns the current
# range as an array of numbers or colors.
# :call-seq:
# range(min,...,max)
# range()
def range(*arguments)
if (arguments.size>0)
@r = arguments.dup
if (@r.size==0)
@r = [-Infinity, Infinity];
elsif (@r.size == 1)
@r = [@r[0], @r[0]]
end
@i=(@r.size-1).times.map do |j|
Rubyvis::Scale.interpolator(@r[j], @r[j + 1]);
end
return self
end
@r
end
def invert(y)
j=Rubyvis.search(@r, y)
j=-j-2 if j<0
j = [0, [@i.size - 1, j].min].max
val=@g.call(@l[j] + (y - @r[j]).quo(@r[j + 1] - @r[j]) * (@l[j + 1] - @l[j]))
@type==:time ? Time.at(val) : val
end
def type(v=nil)
return @type if v.nil?
case @type
when Numeric
v.to_f
when Date
raise "Not implemented yet"
end
end
def ticks_floor(d,prec) # :nodoc:
dfloor=d
case(prec)
when 31536e6, :month
dfloor = Time.utc(d.year,1,d.day,d.hour,d.min,d.sec)
when 2592e6, :month_day
dfloor = Time.utc(d.year,d.month,1,d.hour,d.min,d.sec)
when 6048e5, :week_day
dfloor = dfloor - d.wday*864e2 # TODO
when 864e5, :hour
dfloor = Time.utc(d.year,d.month,d.day,0,d.min,d.sec)
when 36e5, :minute
dfloor = Time.utc(d.year,d.month,d.day,d.hour,0,d.sec)
when 6e4, :second
dfloor = Time.utc(d.year,d.month,d.day,d.hour,d.min,0)
when 1e3
# do nothing
end
return dfloor
end
private :ticks_floor
def to_date(d) # :nodoc:
Time.utc(*d)
end
# Returns an array of evenly-spaced, suitably-rounded values in the input
# domain. This method attempts to return between 5 and 10 tick values. These
# values are frequently used in conjunction with Rule to display
# tick marks or grid lines.
#
# If start and end of domain are the same, returns only one tick value
# @todo: fix for dates and n>10
def ticks(m=nil) # :args: (number_of_ticks=nil)
start = @d.first
_end = @d.last
return [start] if start==_end
reverse = _end < start
min = reverse ? _end : start
max = reverse ? start : _end
span = max - min
# Special case: empty, invalid or infinite span.
if (!span or (span.is_a? Float and span.infinite?))
@tick_format= Rubyvis.Format.date("%x") if (@type == newDate)
return [type(min)];
end
#/* Special case: dates. */
if (@type == :time)
#/* Floor the date d given the precision p. */
precision, format, increment, step = 1,1,1,1
if (span >= 3 * 31536e6 / 1000.0)
precision = 31536e6
format = "%Y"
increment = lambda {|d| Time.at(d.to_f+(step*365*24*60*60)) }
elsif (span >= 3 * 2592e6 / 1000.0)
precision = 2592e6;
format = "%m/%Y";
increment = lambda {|d| Time.at(d.to_f+(step*30*24*60*60)) }
elsif (span >= 3 * 6048e5 / 1000.0)
precision = 6048e5;
format = "%m/%d";
increment = lambda {|d| Time.at(d.to_f+(step*7*24*60*60)) }
elsif (span >= 3 * 864e5 / 1000.0)
precision = 864e5;
format = "%m/%d";
increment = lambda {|d| Time.at(d.to_f+(step*24*60*60)) }
elsif (span >= 3 * 36e5 / 1000.0)
precision = 36e5;
format = "%I:%M %p";
increment = lambda {|d| Time.at(d.to_f+(step*60*60)) }
elsif (span >= 3 * 6e4 / 1000.0 )
precision = 6e4;
format = "%I:%M %p";
increment = lambda {|d| Time.at(d.to_f+(step*60)) }
elsif (span >= 3 * 1e3 / 1000.0)
precision = 1e3;
format = "%I:%M:%S";
increment = lambda {|d| Time.at(d.to_f+(step)) }
else
precision = 1;
format = "%S.%Qs";
increment = lambda {|d| Time.at(d.to_f+(step/1000.0)) }
end
@tick_format = Rubyvis.Format.date(format);
date = Time.at(min.to_f)
dates = []
date = ticks_floor(date,precision)
# If we'd generate too many ticks, skip some!.
n = span / (precision/1000.0)
# FIX FROM HERE
if (n > 10)
case (precision)
when 36e5
step = (n > 20) ? 6 : 3;
date.setHours(Math.floor(date.getHours() / step) * step);
when 2592e6
step = 3; # seasons
ar=date.to_a
ar[4]=(date.month/step.to_f).floor*step
date=to_date(ar)
when 6e4
step = (n > 30) ? 15 : ((n > 15) ? 10 : 5);
date.setMinutes(Math.floor(date.getMinutes() / step) * step);
when 1e3
step = (n > 90) ? 15 : ((n > 60) ? 10 : 5);
date.setSeconds(Math.floor(date.getSeconds() / step) * step);
when 1
step = (n > 1000) ? 250 : ((n > 200) ? 100 : ((n > 100) ? 50 : ((n > 50) ? 25 : 5)));
date.setMilliseconds(Math.floor(date.getMilliseconds() / step) * step);
else
step = Rubyvis.log_ceil(n / 15, 10);
if (n / step < 2)
step =step.quo(5)
elsif (n / step < 5)
step = step.quo(2)
end
date.setFullYear((date.getFullYear().quo(step)).floor * step);
end
end
# END FIX
while (true)
date=increment.call(date)
break if (date.to_f > max.to_f)
dates.push(date)
end
return reverse ? dates.reverse() : dates;
end
# Normal case: numbers.
m||= 10
step = Rubyvis.log_floor(span.quo(m), 10)
err = m.quo(span.quo(step))
if (err <= 0.15)
step = step*10
elsif (err <= 0.35)
step = step*5
elsif (err <= 0.75)
step = step*2
end
start = (min.quo(step)).ceil * step
_end = (max.quo(step)).floor * step
@tick_format= Rubyvis.Format.number.fraction_digits([0, -(Rubyvis.log(step, 10) + 0.01).floor].max).to_proc
ticks = Rubyvis.range(start, _end + step, step)
return reverse ? ticks.reverse() : ticks;
end
# Returns a Proc that formats the specified tick value using the appropriate precision, based on
# the step interval between tick marks. If ticks() has not been called,
# the argument is converted to a string, but no formatting is applied.
# scale.tick_format.call(value)
#
def tick_format
@tick_format
end
# "Nices" this scale, extending the bounds of the input domain to
# evenly-rounded values. Nicing is useful if the domain is computed
# dynamically from data, and may be irregular. For example, given a domain of
# [0.20147987687960267, 0.996679553296417], a call to <tt>nice()</tt> might
# extend the domain to [0.2, 1].
#
# This method must be invoked each time after setting the domain.
def nice
return self if @d.size!=2
start=@d.first
_end=@d[@d.size-1]
reverse=_end<start
min=reverse ? _end : start
max = reverse ? start : _end
span=max-min
return self if(!span or span.infinite?)
step=10**((Math::log(span).quo(Math::log(10))).round-1)
@d=[(min.quo(step)).floor*step, (max.quo(step)).ceil*step]
@d.reverse if reverse
@l=@d.map {|v| @f.call(v)}
self
end
def by(f)
that=self
lambda {|*args|
that.scale(f.js_apply(self,args))
}
end
end
end
|