File: svg_curve.rb

package info (click to toggle)
ruby-rubyvis 0.6.1%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 1,808 kB
  • ctags: 679
  • sloc: ruby: 11,114; makefile: 2
file content (340 lines) | stat: -rw-r--r-- 10,060 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
module Rubyvis::SvgScene
  class PathBasis #:nodoc:
    def initialize(p0,p1,p2,p3)
      @p0=p0
      @p1=p1
      @p2=p2
      @p3=p3
    end
    attr_accessor :p0,:p1,:p2,:p3
    
    #
    # Matrix to transform basis (b-spline) control points to bezier control
    # points. Derived from FvD 11.2.8.
    #
    
    def basis
      [
      [ 1/6.0, 2/3.0, 1/6.0,   0 ],
      [   0, 2/3.0, 1/3.0,   0 ],
      [   0, 1/3.0, 2/3.0,   0 ],
      [   0, 1/6.0, 2/3.0, 1/6.0 ]
      ]
    end
    # Returns the point that is the weighted sum of the specified control points,
    # using the specified weights. This method requires that there are four
    # weights and four control points.    
    def weight(w)
      OpenStruct.new({
      :x=> w[0] * p0.left + w[1] * p1.left + w[2] * p2.left + w[3] * p3.left,
      :y=> w[0] * p0.top  + w[1] * p1.top  + w[2] * p2.top  + w[3] * p3.top
      })
    end
    def convert
      b1 = weight(basis[1])
      b2 = weight(basis[2])
      b3 = weight(basis[3])
      "C#{b1.x},#{b1.y},#{b2.x},#{b2.y },#{b3.x},#{b3.y}"
    end
    def to_s
      convert
    end
    def segment
      b0 = weight(basis[0])
      b1 = weight(basis[1])
      b2 = weight(basis[2])
      b3 = weight(basis[3])
      "M#{b0.x},#{b0.y}C#{b1.x},#{b1.y},#{b2.x},#{b2.y},#{b3.x},#{b3.y}"
    end
  end
  # Converts the specified b-spline curve segment to a bezier curve
  # compatible with SVG "C".
  # * @param p0 the first control point.
  # * @param p1 the second control point.
  # * @param p2 the third control point.
  # * @param p3 the fourth control point.
  def self.path_basis(p0,p1,p2,p3)
    PathBasis.new(p0,p1,p2,p3)
  end
  

  # Interpolates the given points using the basis spline interpolation.
  # Returns an SVG path without the leading M instruction to allow path
  # appending.
  
  def self.curve_basis(points) 
    return "" if (points.size <= 2)
    path = ""
    p0 = points[0]
    p1 = p0
    p2 = p0
    p3 = points[1]
    
    path += self.path_basis(p0, p1, p2, p3).to_s
    2.upto(points.size-1) {|i|
      p0 = p1
      p1 = p2
      p2 = p3
      p3 = points[i]
      path += self.path_basis(p0, p1, p2, p3).to_s
    }
    #  Cycle through to get the last point.
    path += self.path_basis(p1, p2, p3, p3).to_s
    path += self.path_basis(p2, p3, p3, p3).to_s
    path;
  end

  # Interpolates the given points using the basis spline interpolation.
  # If points.length == tangents.length then a regular Hermite interpolation is
  # performed, if points.length == tangents.length + 2 then the first and last
  # segments are filled in with cubic bazier segments.  Returns an array of path
  # strings.
  
  def self.curve_basis_segments(points) 
    return "" if (points.size <= 2)
    paths = []
    p0 = points[0]
    p1 = p0
    p2 = p0
    p3 = points[1]
    firstPath = self.path_basis(p0, p1, p2, p3).segment
    p0 = p1;
    p1 = p2;
    p2 = p3;
    p3 = points[2];
    paths.push(firstPath + self.path_basis(p0, p1, p2, p3).to_s) # merge first & second path
    3.upto(points.size-1) {|i|
      p0 = p1;
      p1 = p2;
      p2 = p3;
      p3 = points[i];
      paths.push(path_basis(p0, p1, p2, p3).segment);
    }
    
    # merge last & second-to-last path
    paths.push(path_basis(p1, p2, p3, p3).segment + path_basis(p2, p3, p3, p3).to_s)
    paths
  end

  # Interpolates the given points with respective tangents using the cubic
  # Hermite spline interpolation. If points.length == tangents.length then a regular
  # Hermite interpolation is performed, if points.length == tangents.length + 2 then
  # the first and last segments are filled in with cubic bazier segments.
  # Returns an SVG path without the leading M instruction to allow path appending.
  #
  # * @param points the array of points.
  # * @param tangents the array of tangent vectors.
  #/
  
  def self.curve_hermite(points, tangents)
    return "" if (tangents.size < 1 or (points.size != tangents.size and points.size != tangents.size + 2)) 
    quad = points.size != tangents.size
    path = ""
    p0 = points[0]
    p = points[1]
    t0 = tangents[0]
    t = t0
    pi = 1

    if (quad) 
        path += "Q#{(p.left - t0.x * 2 / 3)},#{(p.top - t0.y * 2 / 3)},#{p.left},#{p.top}"
        p0 = points[1];
        pi = 2;
    end

    if (tangents.length > 1) 
      t = tangents[1]
      p = points[pi]
      pi+=1
      path += "C#{(p0.left + t0.x)},#{(p0.top + t0.y) },#{(p.left - t.x) },#{(p.top - t.y)},#{p.left},#{p.top}"
      
      2.upto(tangents.size-1) {|i|
        p = points[pi];
        t = tangents[i];
        path += "S#{(p.left - t.x)},#{(p.top - t.y)},#{p.left},#{p.top}"
        pi+=1
      }
    end

    if (quad) 
    lp = points[pi];
    path += "Q#{(p.left + t.x * 2 / 3)},#{(p.top + t.y * 2 / 3)},#{lp.left},#{lp.top}"
    end

    path;
  end
  # Interpolates the given points with respective tangents using the
  # cubic Hermite spline interpolation. Returns an array of path strings.
  #
  # * @param points the array of points.
  # * @param tangents the array of tangent vectors.
  def self.curve_hermite_segments(points, tangents)
    return [] if (tangents.size < 1 or  (points.size != tangents.size and points.size != tangents.size + 2)) 
    quad = points.size != tangents.size
    paths = []
    p0 = points[0]
    p = p0
    t0 = tangents[0]
    t = t0
    pi = 1
    
    if (quad) 
    p = points[1]
    paths.push("M#{p0.left},#{p0.top }Q#{(p.left - t.x * 2 / 3.0 )},#{(p.top - t.y * 2 / 3)},#{p.left},#{p.top}")
    pi = 2
    end
    
    1.upto(tangents.size-1) {|i|
    p0 = p;
    t0 = t;
    p = points[pi]
    t = tangents[i]
    paths.push("M#{p0.left },#{p0.top
      }C#{(p0.left + t0.x) },#{(p0.top + t0.y)
      },#{(p.left - t.x) },#{(p.top - t.y)
      },#{p.left },#{p.top}")
    pi+=1
    }
    
    if (quad) 
    lp = points[pi];
    paths.push("M#{p.left },#{p.top
        }Q#{(p.left + t.x * 2 / 3) },#{(p.top + t.y * 2 / 3) },#{lp.left },#{lp.top}")
    end
    
    paths
  end

  # Computes the tangents for the given points needed for cardinal
  # spline interpolation. Returns an array of tangent vectors. Note: that for n
  # points only the n-2 well defined tangents are returned.
  #
  # * @param points the array of points.
  # * @param tension the tension of hte cardinal spline.
  def self.cardinal_tangents(points, tension) 
    tangents = []
    a = (1 - tension) / 2.0
    p0 = points[0]
    p1 = points[1]
    p2 = points[2]
    3.upto(points.size-1) {|i|
      tangents.push(OpenStruct.new({:x=> a * (p2.left - p0.left), :y=> a * (p2.top - p0.top)}))
      p0 = p1;
      p1 = p2;
      p2 = points[i];
    }
  
    tangents.push(OpenStruct.new({:x=> a * (p2.left - p0.left), :y=> a * (p2.top - p0.top)}))
    return tangents;
  end

  
  # Interpolates the given points using cardinal spline interpolation.
  # Returns an SVG path without the leading M instruction to allow path
  # appending.
  #
  # * @param points the array of points.
  # * @param tension the tension of hte cardinal spline.
  def self.curve_cardinal(points, tension)
    return "" if (points.size <= 2) 
    self.curve_hermite(points, self.cardinal_tangents(points, tension))
  end
  # Interpolates the given points using cardinal spline interpolation.
  # Returns an array of path strings.
  #
  # @param points the array of points.
  # @param tension the tension of hte cardinal spline.
  def self.curve_cardinal_segments(points, tension) 
    return "" if (points.size <= 2) 
    self.curve_hermite_segments(points, self.cardinal_tangents(points, tension))
  end

  # Interpolates the given points using Fritsch-Carlson Monotone cubic
  # Hermite interpolation. Returns an array of tangent vectors.
  #
  # *@param points the array of points.
  def self.monotone_tangents(points) 
    tangents = []
    d = []
    m = []
    dx = []
    #k=0
    
    #/* Compute the slopes of the secant lines between successive points. */
    
    
    0.upto(points.size-2) do |k| 
    
#    while(k < points.size-1) do 
      d[k] = (points[k+1].top - points[k].top) / (points[k+1].left - points[k].left).to_f
      k+=1
    end
    
    #/* Initialize the tangents at every point as the average of the secants. */
    m[0] = d[0]
    dx[0] = points[1].left - points[0].left
    
    
    1.upto(points.size-2) {|k|
      m[k] = (d[k-1]+d[k]) / 2.0
      dx[k] = (points[k+1].left - points[k-1].left) / 2.0
    }
    
    k=points.size-1
    
    m[k] = d[k-1];
    dx[k] = (points[k].left - points[k-1].left);
    
    # /* Step 3. Very important, step 3. Yep. Wouldn't miss it. */
    (points.size-1).times {|kk|
      if d[kk] == 0 
        m[ kk ] = 0;
        m[kk + 1] = 0;
      end
    }
    
    # /* Step 4 + 5. Out of 5 or more steps. */
    
    
    (points.size-1).times {|kk|
      next if ((m[kk].abs < 1e-5) or (m[kk+1].abs < 1e-5))
      akk = m[kk] / d[kk].to_f
      bkk = m[kk + 1] / d[kk].to_f
      s = akk * akk + bkk * bkk; # monotone constant (?)
      if (s > 9) 
        tkk = 3.0 / Math.sqrt(s)
        m[kk] = tkk * akk * d[kk]
        m[kk + 1] = tkk * bkk * d[kk]
      end
    }
    len=nil;
    points.size.times {|i|
      len = 1 + m[i] * m[i]; #// pv.vector(1, m[i]).norm().times(dx[i]/3)
      tangents.push(OpenStruct.new({:x=> dx[i] / 3.0 / len, :y=> m[i] * dx[i] / 3.0 / len}))
    }
    
    tangents;
  end

  # Interpolates the given points using Fritsch-Carlson Monotone cubic
  # Hermite interpolation. Returns an SVG path without the leading M instruction
  # to allow path appending.
  #
  # * @param points the array of points.
  def self.curve_monotone(points) 
     return "" if (points.length <= 2)
     return self.curve_hermite(points, self.monotone_tangents(points))
  end

  # Interpolates the given points using Fritsch-Carlson Monotone cubic
  # Hermite interpolation.
  # Returns an array of path strings.
  #
  # * @param points the array of points.
  #/
  def self.curve_monotone_segments(points) 
    return "" if (points.size <= 2)
     self.curve_hermite_segments(points, self.monotone_tangents(points))
  end

end