1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
|
# frozen-string-literal: true
module Sequel
class Dataset
# ---------------------
# :section: 2 - Methods that execute code on the database
# These methods all execute the dataset's SQL on the database.
# They don't return modified datasets, so if used in a method chain
# they should be the last method called.
# ---------------------
# Action methods defined by Sequel that execute code on the database.
ACTION_METHODS = (<<-METHS).split.map(&:to_sym).freeze
<< [] all as_hash avg count columns columns! delete each
empty? fetch_rows first first! get import insert last
map max min multi_insert paged_each select_hash select_hash_groups select_map select_order_map
single_record single_record! single_value single_value! sum to_hash to_hash_groups truncate update
where_all where_each where_single_value
METHS
# The clone options to use when retrieving columns for a dataset.
COLUMNS_CLONE_OPTIONS = {:distinct => nil, :limit => 0, :offset=>nil, :where=>nil, :having=>nil, :order=>nil, :row_proc=>nil, :graph=>nil, :eager_graph=>nil}.freeze
# Inserts the given argument into the database. Returns self so it
# can be used safely when chaining:
#
# DB[:items] << {id: 0, name: 'Zero'} << DB[:old_items].select(:id, name)
def <<(arg)
insert(arg)
self
end
# Returns the first record matching the conditions. Examples:
#
# DB[:table][id: 1] # SELECT * FROM table WHERE (id = 1) LIMIT 1
# # => {:id=>1}
def [](*conditions)
raise(Error, 'You cannot call Dataset#[] with an integer or with no arguments') if (conditions.length == 1 and conditions.first.is_a?(Integer)) or conditions.length == 0
first(*conditions)
end
# Returns an array with all records in the dataset. If a block is given,
# the array is iterated over after all items have been loaded.
#
# DB[:table].all # SELECT * FROM table
# # => [{:id=>1, ...}, {:id=>2, ...}, ...]
#
# # Iterate over all rows in the table
# DB[:table].all{|row| p row}
def all(&block)
_all(block){|a| each{|r| a << r}}
end
# Returns the average value for the given column/expression.
# Uses a virtual row block if no argument is given.
#
# DB[:table].avg(:number) # SELECT avg(number) FROM table LIMIT 1
# # => 3
# DB[:table].avg{function(column)} # SELECT avg(function(column)) FROM table LIMIT 1
# # => 1
def avg(arg=(no_arg = true), &block)
arg = Sequel.virtual_row(&block) if no_arg
_aggregate(:avg, arg)
end
# Returns the columns in the result set in order as an array of symbols.
# If the columns are currently cached, returns the cached value. Otherwise,
# a SELECT query is performed to retrieve a single row in order to get the columns.
#
# If you are looking for all columns for a single table and maybe some information about
# each column (e.g. database type), see <tt>Database#schema</tt>.
#
# DB[:table].columns
# # => [:id, :name]
def columns
_columns || columns!
end
# Ignore any cached column information and perform a query to retrieve
# a row in order to get the columns.
#
# DB[:table].columns!
# # => [:id, :name]
def columns!
ds = clone(COLUMNS_CLONE_OPTIONS)
ds.each{break}
if cols = ds.cache[:_columns]
self.columns = cols
else
[]
end
end
COUNT_SELECT = Sequel.function(:count).*.as(:count)
# Returns the number of records in the dataset. If an argument is provided,
# it is used as the argument to count. If a block is provided, it is
# treated as a virtual row, and the result is used as the argument to
# count.
#
# DB[:table].count # SELECT count(*) AS count FROM table LIMIT 1
# # => 3
# DB[:table].count(:column) # SELECT count(column) AS count FROM table LIMIT 1
# # => 2
# DB[:table].count{foo(column)} # SELECT count(foo(column)) AS count FROM table LIMIT 1
# # => 1
def count(arg=(no_arg=true), &block)
if no_arg && !block
cached_dataset(:_count_ds) do
aggregate_dataset.select(COUNT_SELECT).single_value_ds
end.single_value!.to_i
else
if block
if no_arg
arg = Sequel.virtual_row(&block)
else
raise Error, 'cannot provide both argument and block to Dataset#count'
end
end
_aggregate(:count, arg)
end
end
# Deletes the records in the dataset, returning the number of records deleted.
#
# DB[:table].delete # DELETE * FROM table
# # => 3
#
# Some databases support using multiple tables in a DELETE query. This requires
# multiple FROM tables (JOINs can also be used). As multiple FROM tables use
# an implicit CROSS JOIN, you should make sure your WHERE condition uses the
# appropriate filters for the FROM tables:
#
# DB.from(:a, :b).join(:c, :d=>Sequel[:b][:e]).where{{a[:f]=>b[:g], a[:id]=>c[:h]}}.
# delete
# # DELETE FROM a
# # USING b
# # INNER JOIN c ON (c.d = b.e)
# # WHERE ((a.f = b.g) AND (a.id = c.h))
def delete(&block)
sql = delete_sql
if uses_returning?(:delete)
returning_fetch_rows(sql, &block)
else
execute_dui(sql)
end
end
# Iterates over the records in the dataset as they are yielded from the
# database adapter, and returns self.
#
# DB[:table].each{|row| p row} # SELECT * FROM table
#
# Note that this method is not safe to use on many adapters if you are
# running additional queries inside the provided block. If you are
# running queries inside the block, you should use +all+ instead of +each+
# for the outer queries, or use a separate thread or shard inside +each+.
def each
if rp = row_proc
fetch_rows(select_sql){|r| yield rp.call(r)}
else
fetch_rows(select_sql){|r| yield r}
end
self
end
EMPTY_SELECT = Sequel::SQL::AliasedExpression.new(1, :one)
# Returns true if no records exist in the dataset, false otherwise
#
# DB[:table].empty? # SELECT 1 AS one FROM table LIMIT 1
# # => false
def empty?
cached_dataset(:_empty_ds) do
single_value_ds.unordered.select(EMPTY_SELECT)
end.single_value!.nil?
end
# Returns the first matching record if no arguments are given.
# If a integer argument is given, it is interpreted as a limit, and then returns all
# matching records up to that limit. If any other type of
# argument(s) is passed, it is treated as a filter and the
# first matching record is returned. If a block is given, it is used
# to filter the dataset before returning anything.
#
# If there are no records in the dataset, returns nil (or an empty
# array if an integer argument is given).
#
# Examples:
#
# DB[:table].first # SELECT * FROM table LIMIT 1
# # => {:id=>7}
#
# DB[:table].first(2) # SELECT * FROM table LIMIT 2
# # => [{:id=>6}, {:id=>4}]
#
# DB[:table].first(id: 2) # SELECT * FROM table WHERE (id = 2) LIMIT 1
# # => {:id=>2}
#
# DB[:table].first(Sequel.lit("id = 3")) # SELECT * FROM table WHERE (id = 3) LIMIT 1
# # => {:id=>3}
#
# DB[:table].first(Sequel.lit("id = ?", 4)) # SELECT * FROM table WHERE (id = 4) LIMIT 1
# # => {:id=>4}
#
# DB[:table].first{id > 2} # SELECT * FROM table WHERE (id > 2) LIMIT 1
# # => {:id=>5}
#
# DB[:table].first(Sequel.lit("id > ?", 4)){id < 6} # SELECT * FROM table WHERE ((id > 4) AND (id < 6)) LIMIT 1
# # => {:id=>5}
#
# DB[:table].first(2){id < 2} # SELECT * FROM table WHERE (id < 2) LIMIT 2
# # => [{:id=>1}]
def first(*args, &block)
case args.length
when 0
unless block
return single_record
end
when 1
arg = args[0]
if arg.is_a?(Integer)
res = if block
if loader = cached_placeholder_literalizer(:_first_integer_cond_loader) do |pl|
where(pl.arg).limit(pl.arg)
end
loader.all(filter_expr(&block), arg)
else
where(&block).limit(arg).all
end
else
if loader = cached_placeholder_literalizer(:_first_integer_loader) do |pl|
limit(pl.arg)
end
loader.all(arg)
else
limit(arg).all
end
end
return res
end
where_args = args
args = arg
end
if loader = cached_where_placeholder_literalizer(where_args||args, block, :_first_cond_loader) do |pl|
_single_record_ds.where(pl.arg)
end
loader.first(filter_expr(args, &block))
else
_single_record_ds.where(args, &block).single_record!
end
end
# Calls first. If first returns nil (signaling that no
# row matches), raise a Sequel::NoMatchingRow exception.
def first!(*args, &block)
first(*args, &block) || raise(Sequel::NoMatchingRow.new(self))
end
# Return the column value for the first matching record in the dataset.
# Raises an error if both an argument and block is given.
#
# DB[:table].get(:id) # SELECT id FROM table LIMIT 1
# # => 3
#
# ds.get{sum(id)} # SELECT sum(id) AS v FROM table LIMIT 1
# # => 6
#
# You can pass an array of arguments to return multiple arguments,
# but you must make sure each element in the array has an alias that
# Sequel can determine:
#
# DB[:table].get([:id, :name]) # SELECT id, name FROM table LIMIT 1
# # => [3, 'foo']
#
# DB[:table].get{[sum(id).as(sum), name]} # SELECT sum(id) AS sum, name FROM table LIMIT 1
# # => [6, 'foo']
def get(column=(no_arg=true; nil), &block)
ds = naked
if block
raise(Error, 'Must call Dataset#get with an argument or a block, not both') unless no_arg
ds = ds.select(&block)
column = ds.opts[:select]
column = nil if column.is_a?(Array) && column.length < 2
else
case column
when Array
ds = ds.select(*column)
when LiteralString, Symbol, SQL::Identifier, SQL::QualifiedIdentifier, SQL::AliasedExpression
if loader = cached_placeholder_literalizer(:_get_loader) do |pl|
ds.single_value_ds.select(pl.arg)
end
return loader.get(column)
end
ds = ds.select(column)
else
if loader = cached_placeholder_literalizer(:_get_alias_loader) do |pl|
ds.single_value_ds.select(Sequel.as(pl.arg, :v))
end
return loader.get(column)
end
ds = ds.select(Sequel.as(column, :v))
end
end
if column.is_a?(Array)
if r = ds.single_record
r.values_at(*hash_key_symbols(column))
end
else
ds.single_value
end
end
# Inserts multiple records into the associated table. This method can be
# used to efficiently insert a large number of records into a table in a
# single query if the database supports it. Inserts are automatically
# wrapped in a transaction if necessary.
#
# This method is called with a columns array and an array of value arrays:
#
# DB[:table].import([:x, :y], [[1, 2], [3, 4]])
# # INSERT INTO table (x, y) VALUES (1, 2)
# # INSERT INTO table (x, y) VALUES (3, 4)
#
# or, if the database supports it:
#
# # INSERT INTO table (x, y) VALUES (1, 2), (3, 4)
#
# This method also accepts a dataset instead of an array of value arrays:
#
# DB[:table].import([:x, :y], DB[:table2].select(:a, :b))
# # INSERT INTO table (x, y) SELECT a, b FROM table2
#
# Options:
# :commit_every :: Open a new transaction for every given number of
# records. For example, if you provide a value of 50,
# will commit after every 50 records. When a
# transaction is not required, this option controls
# the maximum number of values to insert with a single
# statement; it does not force the use of a
# transaction.
# :return :: When this is set to :primary_key, returns an array of
# autoincremented primary key values for the rows inserted.
# This does not have an effect if +values+ is a Dataset.
# :server :: Set the server/shard to use for the transaction and insert
# queries.
# :slice :: Same as :commit_every, :commit_every takes precedence.
def import(columns, values, opts=OPTS)
return @db.transaction{insert(columns, values)} if values.is_a?(Dataset)
return if values.empty?
raise(Error, 'Using Sequel::Dataset#import with an empty column array is not allowed') if columns.empty?
ds = opts[:server] ? server(opts[:server]) : self
if slice_size = opts.fetch(:commit_every, opts.fetch(:slice, default_import_slice))
offset = 0
rows = []
while offset < values.length
rows << ds._import(columns, values[offset, slice_size], opts)
offset += slice_size
end
rows.flatten
else
ds._import(columns, values, opts)
end
end
# Inserts values into the associated table. The returned value is generally
# the value of the autoincremented primary key for the inserted row, assuming that
# a single row is inserted and the table has an autoincrementing primary key.
#
# +insert+ handles a number of different argument formats:
# no arguments or single empty hash :: Uses DEFAULT VALUES
# single hash :: Most common format, treats keys as columns and values as values
# single array :: Treats entries as values, with no columns
# two arrays :: Treats first array as columns, second array as values
# single Dataset :: Treats as an insert based on a selection from the dataset given,
# with no columns
# array and dataset :: Treats as an insert based on a selection from the dataset
# given, with the columns given by the array.
#
# Examples:
#
# DB[:items].insert
# # INSERT INTO items DEFAULT VALUES
#
# DB[:items].insert({})
# # INSERT INTO items DEFAULT VALUES
#
# DB[:items].insert([1,2,3])
# # INSERT INTO items VALUES (1, 2, 3)
#
# DB[:items].insert([:a, :b], [1,2])
# # INSERT INTO items (a, b) VALUES (1, 2)
#
# DB[:items].insert(a: 1, b: 2)
# # INSERT INTO items (a, b) VALUES (1, 2)
#
# DB[:items].insert(DB[:old_items])
# # INSERT INTO items SELECT * FROM old_items
#
# DB[:items].insert([:a, :b], DB[:old_items])
# # INSERT INTO items (a, b) SELECT * FROM old_items
def insert(*values, &block)
sql = insert_sql(*values)
if uses_returning?(:insert)
returning_fetch_rows(sql, &block)
else
execute_insert(sql)
end
end
# Reverses the order and then runs #first with the given arguments and block. Note that this
# will not necessarily give you the last record in the dataset,
# unless you have an unambiguous order. If there is not
# currently an order for this dataset, raises an +Error+.
#
# DB[:table].order(:id).last # SELECT * FROM table ORDER BY id DESC LIMIT 1
# # => {:id=>10}
#
# DB[:table].order(Sequel.desc(:id)).last(2) # SELECT * FROM table ORDER BY id ASC LIMIT 2
# # => [{:id=>1}, {:id=>2}]
def last(*args, &block)
raise(Error, 'No order specified') unless @opts[:order]
reverse.first(*args, &block)
end
# Maps column values for each record in the dataset (if an argument is given)
# or performs the stock mapping functionality of +Enumerable+ otherwise.
# Raises an +Error+ if both an argument and block are given.
#
# DB[:table].map(:id) # SELECT * FROM table
# # => [1, 2, 3, ...]
#
# DB[:table].map{|r| r[:id] * 2} # SELECT * FROM table
# # => [2, 4, 6, ...]
#
# You can also provide an array of column names:
#
# DB[:table].map([:id, :name]) # SELECT * FROM table
# # => [[1, 'A'], [2, 'B'], [3, 'C'], ...]
def map(column=nil, &block)
if column
raise(Error, 'Must call Dataset#map with either an argument or a block, not both') if block
return naked.map(column) if row_proc
if column.is_a?(Array)
super(){|r| r.values_at(*column)}
else
super(){|r| r[column]}
end
else
super(&block)
end
end
# Returns the maximum value for the given column/expression.
# Uses a virtual row block if no argument is given.
#
# DB[:table].max(:id) # SELECT max(id) FROM table LIMIT 1
# # => 10
# DB[:table].max{function(column)} # SELECT max(function(column)) FROM table LIMIT 1
# # => 7
def max(arg=(no_arg = true), &block)
arg = Sequel.virtual_row(&block) if no_arg
_aggregate(:max, arg)
end
# Execute a MERGE statement, which allows for INSERT, UPDATE, and DELETE
# behavior in a single query, based on whether rows from a source table
# match rows in the current table, based on the join conditions.
#
# Unless the dataset uses static SQL, to use #merge, you must first have
# called #merge_using to specify the merge source and join conditions.
# You will then likely to call one or more of the following methods
# to specify MERGE behavior by adding WHEN [NOT] MATCHED clauses:
#
# * #merge_insert
# * #merge_update
# * #merge_delete
#
# The WHEN [NOT] MATCHED clauses are added to the SQL in the order these
# methods were called on the dataset. If none of these methods are
# called, an error is raised.
#
# Example:
#
# DB[:m1]
# merge_using(:m2, i1: :i2).
# merge_insert(i1: :i2, a: Sequel[:b]+11).
# merge_delete{a > 30}.
# merge_update(i1: Sequel[:i1]+:i2+10, a: Sequel[:a]+:b+20).
# merge
#
# SQL:
#
# MERGE INTO m1 USING m2 ON (i1 = i2)
# WHEN NOT MATCHED THEN INSERT (i1, a) VALUES (i2, (b + 11))
# WHEN MATCHED AND (a > 30) THEN DELETE
# WHEN MATCHED THEN UPDATE SET i1 = (i1 + i2 + 10), a = (a + b + 20)
#
# On PostgreSQL, two additional merge methods are supported, for the
# PostgreSQL-specific DO NOTHING syntax.
#
# * #merge_do_nothing_when_matched
# * #merge_do_nothing_when_not_matched
#
# This method is supported on Oracle, but Oracle's MERGE support is
# non-standard, and has the following issues:
#
# * DELETE clause requires UPDATE clause
# * DELETE clause requires a condition
# * DELETE clause only affects rows updated by UPDATE clause
def merge
execute_ddl(merge_sql)
end
# Returns the minimum value for the given column/expression.
# Uses a virtual row block if no argument is given.
#
# DB[:table].min(:id) # SELECT min(id) FROM table LIMIT 1
# # => 1
# DB[:table].min{function(column)} # SELECT min(function(column)) FROM table LIMIT 1
# # => 0
def min(arg=(no_arg = true), &block)
arg = Sequel.virtual_row(&block) if no_arg
_aggregate(:min, arg)
end
# This is a front end for import that allows you to submit an array of
# hashes instead of arrays of columns and values:
#
# DB[:table].multi_insert([{x: 1}, {x: 2}])
# # INSERT INTO table (x) VALUES (1)
# # INSERT INTO table (x) VALUES (2)
#
# Be aware that all hashes should have the same keys if you use this calling method,
# otherwise some columns could be missed or set to null instead of to default
# values.
#
# This respects the same options as #import.
def multi_insert(hashes, opts=OPTS)
return if hashes.empty?
columns = hashes.first.keys
import(columns, hashes.map{|h| columns.map{|c| h[c]}}, opts)
end
# Yields each row in the dataset, but internally uses multiple queries as needed to
# process the entire result set without keeping all rows in the dataset in memory,
# even if the underlying driver buffers all query results in memory.
#
# Because this uses multiple queries internally, in order to remain consistent,
# it also uses a transaction internally. Additionally, to work correctly, the dataset
# must have unambiguous order. Using an ambiguous order can result in an infinite loop,
# as well as subtler bugs such as yielding duplicate rows or rows being skipped.
#
# Sequel checks that the datasets using this method have an order, but it cannot
# ensure that the order is unambiguous.
#
# Note that this method is not safe to use on many adapters if you are
# running additional queries inside the provided block. If you are
# running queries inside the block, use a separate thread or shard inside +paged_each+.
#
# Options:
# :rows_per_fetch :: The number of rows to fetch per query. Defaults to 1000.
# :strategy :: The strategy to use for paging of results. By default this is :offset,
# for using an approach with a limit and offset for every page. This can
# be set to :filter, which uses a limit and a filter that excludes
# rows from previous pages. In order for this strategy to work, you must be
# selecting the columns you are ordering by, and none of the columns can contain
# NULLs. Note that some Sequel adapters have optimized implementations that will
# use cursors or streaming regardless of the :strategy option used.
# :filter_values :: If the strategy: :filter option is used, this option should be a proc
# that accepts the last retrieved row for the previous page and an array of
# ORDER BY expressions, and returns an array of values relating to those
# expressions for the last retrieved row. You will need to use this option
# if your ORDER BY expressions are not simple columns, if they contain
# qualified identifiers that would be ambiguous unqualified, if they contain
# any identifiers that are aliased in SELECT, and potentially other cases.
#
# Examples:
#
# DB[:table].order(:id).paged_each{|row| }
# # SELECT * FROM table ORDER BY id LIMIT 1000
# # SELECT * FROM table ORDER BY id LIMIT 1000 OFFSET 1000
# # ...
#
# DB[:table].order(:id).paged_each(rows_per_fetch: 100){|row| }
# # SELECT * FROM table ORDER BY id LIMIT 100
# # SELECT * FROM table ORDER BY id LIMIT 100 OFFSET 100
# # ...
#
# DB[:table].order(:id).paged_each(strategy: :filter){|row| }
# # SELECT * FROM table ORDER BY id LIMIT 1000
# # SELECT * FROM table WHERE id > 1001 ORDER BY id LIMIT 1000
# # ...
#
# DB[:table].order(:id).paged_each(strategy: :filter,
# filter_values: lambda{|row, exprs| [row[:id]]}){|row| }
# # SELECT * FROM table ORDER BY id LIMIT 1000
# # SELECT * FROM table WHERE id > 1001 ORDER BY id LIMIT 1000
# # ...
def paged_each(opts=OPTS)
unless @opts[:order]
raise Sequel::Error, "Dataset#paged_each requires the dataset be ordered"
end
unless defined?(yield)
return enum_for(:paged_each, opts)
end
total_limit = @opts[:limit]
offset = @opts[:offset]
if server = @opts[:server]
opts = Hash[opts]
opts[:server] = server
end
rows_per_fetch = opts[:rows_per_fetch] || 1000
strategy = if offset || total_limit
:offset
else
opts[:strategy] || :offset
end
db.transaction(opts) do
case strategy
when :filter
filter_values = opts[:filter_values] || proc{|row, exprs| exprs.map{|e| row[hash_key_symbol(e)]}}
base_ds = ds = limit(rows_per_fetch)
while ds
last_row = nil
ds.each do |row|
last_row = row
yield row
end
ds = (base_ds.where(ignore_values_preceding(last_row, &filter_values)) if last_row)
end
else
offset ||= 0
num_rows_yielded = rows_per_fetch
total_rows = 0
while num_rows_yielded == rows_per_fetch && (total_limit.nil? || total_rows < total_limit)
if total_limit && total_rows + rows_per_fetch > total_limit
rows_per_fetch = total_limit - total_rows
end
num_rows_yielded = 0
limit(rows_per_fetch, offset).each do |row|
num_rows_yielded += 1
total_rows += 1 if total_limit
yield row
end
offset += rows_per_fetch
end
end
end
self
end
# Returns a hash with key_column values as keys and value_column values as
# values. Similar to as_hash, but only selects the columns given. Like
# as_hash, it accepts an optional :hash parameter, into which entries will
# be merged.
#
# DB[:table].select_hash(:id, :name)
# # SELECT id, name FROM table
# # => {1=>'a', 2=>'b', ...}
#
# You can also provide an array of column names for either the key_column,
# the value column, or both:
#
# DB[:table].select_hash([:id, :foo], [:name, :bar])
# # SELECT id, foo, name, bar FROM table
# # => {[1, 3]=>['a', 'c'], [2, 4]=>['b', 'd'], ...}
#
# When using this method, you must be sure that each expression has an alias
# that Sequel can determine.
def select_hash(key_column, value_column, opts = OPTS)
_select_hash(:as_hash, key_column, value_column, opts)
end
# Returns a hash with key_column values as keys and an array of value_column values.
# Similar to to_hash_groups, but only selects the columns given. Like to_hash_groups,
# it accepts an optional :hash parameter, into which entries will be merged.
#
# DB[:table].select_hash_groups(:name, :id)
# # SELECT id, name FROM table
# # => {'a'=>[1, 4, ...], 'b'=>[2, ...], ...}
#
# You can also provide an array of column names for either the key_column,
# the value column, or both:
#
# DB[:table].select_hash_groups([:first, :middle], [:last, :id])
# # SELECT first, middle, last, id FROM table
# # => {['a', 'b']=>[['c', 1], ['d', 2], ...], ...}
#
# When using this method, you must be sure that each expression has an alias
# that Sequel can determine.
def select_hash_groups(key_column, value_column, opts = OPTS)
_select_hash(:to_hash_groups, key_column, value_column, opts)
end
# Selects the column given (either as an argument or as a block), and
# returns an array of all values of that column in the dataset. If you
# give a block argument that returns an array with multiple entries,
# the contents of the resulting array are undefined. Raises an Error
# if called with both an argument and a block.
#
# DB[:table].select_map(:id) # SELECT id FROM table
# # => [3, 5, 8, 1, ...]
#
# DB[:table].select_map{id * 2} # SELECT (id * 2) FROM table
# # => [6, 10, 16, 2, ...]
#
# You can also provide an array of column names:
#
# DB[:table].select_map([:id, :name]) # SELECT id, name FROM table
# # => [[1, 'A'], [2, 'B'], [3, 'C'], ...]
#
# If you provide an array of expressions, you must be sure that each entry
# in the array has an alias that Sequel can determine.
def select_map(column=nil, &block)
_select_map(column, false, &block)
end
# The same as select_map, but in addition orders the array by the column.
#
# DB[:table].select_order_map(:id) # SELECT id FROM table ORDER BY id
# # => [1, 2, 3, 4, ...]
#
# DB[:table].select_order_map{id * 2} # SELECT (id * 2) FROM table ORDER BY (id * 2)
# # => [2, 4, 6, 8, ...]
#
# You can also provide an array of column names:
#
# DB[:table].select_order_map([:id, :name]) # SELECT id, name FROM table ORDER BY id, name
# # => [[1, 'A'], [2, 'B'], [3, 'C'], ...]
#
# If you provide an array of expressions, you must be sure that each entry
# in the array has an alias that Sequel can determine.
def select_order_map(column=nil, &block)
_select_map(column, true, &block)
end
# Limits the dataset to one record, and returns the first record in the dataset,
# or nil if the dataset has no records. Users should probably use +first+ instead of
# this method. Example:
#
# DB[:test].single_record # SELECT * FROM test LIMIT 1
# # => {:column_name=>'value'}
def single_record
_single_record_ds.single_record!
end
# Returns the first record in dataset, without limiting the dataset. Returns nil if
# the dataset has no records. Users should probably use +first+ instead of this method.
# This should only be used if you know the dataset is already limited to a single record.
# This method may be desirable to use for performance reasons, as it does not clone the
# receiver. Example:
#
# DB[:test].single_record! # SELECT * FROM test
# # => {:column_name=>'value'}
def single_record!
with_sql_first(select_sql)
end
# Returns the first value of the first record in the dataset.
# Returns nil if dataset is empty. Users should generally use
# +get+ instead of this method. Example:
#
# DB[:test].single_value # SELECT * FROM test LIMIT 1
# # => 'value'
def single_value
single_value_ds.each do |r|
r.each{|_, v| return v}
end
nil
end
# Returns the first value of the first record in the dataset, without limiting the dataset.
# Returns nil if the dataset is empty. Users should generally use +get+ instead of this
# method. Should not be used on graphed datasets or datasets that have row_procs that
# don't return hashes. This method may be desirable to use for performance reasons, as
# it does not clone the receiver.
#
# DB[:test].single_value! # SELECT * FROM test
# # => 'value'
def single_value!
with_sql_single_value(select_sql)
end
# Returns the sum for the given column/expression.
# Uses a virtual row block if no column is given.
#
# DB[:table].sum(:id) # SELECT sum(id) FROM table LIMIT 1
# # => 55
# DB[:table].sum{function(column)} # SELECT sum(function(column)) FROM table LIMIT 1
# # => 10
def sum(arg=(no_arg = true), &block)
arg = Sequel.virtual_row(&block) if no_arg
_aggregate(:sum, arg)
end
# Returns a hash with one column used as key and another used as value.
# If rows have duplicate values for the key column, the latter row(s)
# will overwrite the value of the previous row(s). If the value_column
# is not given or nil, uses the entire hash as the value.
#
# DB[:table].as_hash(:id, :name) # SELECT * FROM table
# # {1=>'Jim', 2=>'Bob', ...}
#
# DB[:table].as_hash(:id) # SELECT * FROM table
# # {1=>{:id=>1, :name=>'Jim'}, 2=>{:id=>2, :name=>'Bob'}, ...}
#
# You can also provide an array of column names for either the key_column,
# the value column, or both:
#
# DB[:table].as_hash([:id, :foo], [:name, :bar]) # SELECT * FROM table
# # {[1, 3]=>['Jim', 'bo'], [2, 4]=>['Bob', 'be'], ...}
#
# DB[:table].as_hash([:id, :name]) # SELECT * FROM table
# # {[1, 'Jim']=>{:id=>1, :name=>'Jim'}, [2, 'Bob']=>{:id=>2, :name=>'Bob'}, ...}
#
# Options:
# :all :: Use all instead of each to retrieve the objects
# :hash :: The object into which the values will be placed. If this is not
# given, an empty hash is used. This can be used to use a hash with
# a default value or default proc.
def as_hash(key_column, value_column = nil, opts = OPTS)
h = opts[:hash] || {}
meth = opts[:all] ? :all : :each
if value_column
return naked.as_hash(key_column, value_column, opts) if row_proc
if value_column.is_a?(Array)
if key_column.is_a?(Array)
public_send(meth){|r| h[r.values_at(*key_column)] = r.values_at(*value_column)}
else
public_send(meth){|r| h[r[key_column]] = r.values_at(*value_column)}
end
else
if key_column.is_a?(Array)
public_send(meth){|r| h[r.values_at(*key_column)] = r[value_column]}
else
public_send(meth){|r| h[r[key_column]] = r[value_column]}
end
end
elsif key_column.is_a?(Array)
public_send(meth){|r| h[key_column.map{|k| r[k]}] = r}
else
public_send(meth){|r| h[r[key_column]] = r}
end
h
end
# Alias of as_hash for backwards compatibility.
def to_hash(*a)
as_hash(*a)
end
# Returns a hash with one column used as key and the values being an
# array of column values. If the value_column is not given or nil, uses
# the entire hash as the value.
#
# DB[:table].to_hash_groups(:name, :id) # SELECT * FROM table
# # {'Jim'=>[1, 4, 16, ...], 'Bob'=>[2], ...}
#
# DB[:table].to_hash_groups(:name) # SELECT * FROM table
# # {'Jim'=>[{:id=>1, :name=>'Jim'}, {:id=>4, :name=>'Jim'}, ...], 'Bob'=>[{:id=>2, :name=>'Bob'}], ...}
#
# You can also provide an array of column names for either the key_column,
# the value column, or both:
#
# DB[:table].to_hash_groups([:first, :middle], [:last, :id]) # SELECT * FROM table
# # {['Jim', 'Bob']=>[['Smith', 1], ['Jackson', 4], ...], ...}
#
# DB[:table].to_hash_groups([:first, :middle]) # SELECT * FROM table
# # {['Jim', 'Bob']=>[{:id=>1, :first=>'Jim', :middle=>'Bob', :last=>'Smith'}, ...], ...}
#
# Options:
# :all :: Use all instead of each to retrieve the objects
# :hash :: The object into which the values will be placed. If this is not
# given, an empty hash is used. This can be used to use a hash with
# a default value or default proc.
def to_hash_groups(key_column, value_column = nil, opts = OPTS)
h = opts[:hash] || {}
meth = opts[:all] ? :all : :each
if value_column
return naked.to_hash_groups(key_column, value_column, opts) if row_proc
if value_column.is_a?(Array)
if key_column.is_a?(Array)
public_send(meth){|r| (h[r.values_at(*key_column)] ||= []) << r.values_at(*value_column)}
else
public_send(meth){|r| (h[r[key_column]] ||= []) << r.values_at(*value_column)}
end
else
if key_column.is_a?(Array)
public_send(meth){|r| (h[r.values_at(*key_column)] ||= []) << r[value_column]}
else
public_send(meth){|r| (h[r[key_column]] ||= []) << r[value_column]}
end
end
elsif key_column.is_a?(Array)
public_send(meth){|r| (h[key_column.map{|k| r[k]}] ||= []) << r}
else
public_send(meth){|r| (h[r[key_column]] ||= []) << r}
end
h
end
# Truncates the dataset. Returns nil.
#
# DB[:table].truncate # TRUNCATE table
# # => nil
def truncate
execute_ddl(truncate_sql)
end
# Updates values for the dataset. The returned value is the number of rows updated.
# +values+ should be a hash where the keys are columns to set and values are the values to
# which to set the columns.
#
# DB[:table].update(x: nil) # UPDATE table SET x = NULL
# # => 10
#
# DB[:table].update(x: Sequel[:x]+1, y: 0) # UPDATE table SET x = (x + 1), y = 0
# # => 10
#
# Some databases support using multiple tables in an UPDATE query. This requires
# multiple FROM tables (JOINs can also be used). As multiple FROM tables use
# an implicit CROSS JOIN, you should make sure your WHERE condition uses the
# appropriate filters for the FROM tables:
#
# DB.from(:a, :b).join(:c, :d=>Sequel[:b][:e]).where{{a[:f]=>b[:g], a[:id]=>10}}.
# update(:f=>Sequel[:c][:h])
# # UPDATE a
# # SET f = c.h
# # FROM b
# # INNER JOIN c ON (c.d = b.e)
# # WHERE ((a.f = b.g) AND (a.id = 10))
def update(values=OPTS, &block)
sql = update_sql(values)
if uses_returning?(:update)
returning_fetch_rows(sql, &block)
else
execute_dui(sql)
end
end
# Return an array of all rows matching the given filter condition, also
# yielding each row to the given block. Basically the same as where(cond).all(&block),
# except it can be optimized to not create an intermediate dataset.
#
# DB[:table].where_all(id: [1,2,3])
# # SELECT * FROM table WHERE (id IN (1, 2, 3))
def where_all(cond, &block)
if loader = _where_loader([cond], nil)
loader.all(filter_expr(cond), &block)
else
where(cond).all(&block)
end
end
# Iterate over all rows matching the given filter condition,
# yielding each row to the given block. Basically the same as where(cond).each(&block),
# except it can be optimized to not create an intermediate dataset.
#
# DB[:table].where_each(id: [1,2,3]){|row| p row}
# # SELECT * FROM table WHERE (id IN (1, 2, 3))
def where_each(cond, &block)
if loader = _where_loader([cond], nil)
loader.each(filter_expr(cond), &block)
else
where(cond).each(&block)
end
end
# Filter the datasets using the given filter condition, then return a single value.
# This assumes that the dataset has already been setup to limit the selection to
# a single column. Basically the same as where(cond).single_value,
# except it can be optimized to not create an intermediate dataset.
#
# DB[:table].select(:name).where_single_value(id: 1)
# # SELECT name FROM table WHERE (id = 1) LIMIT 1
def where_single_value(cond)
if loader = cached_where_placeholder_literalizer([cond], nil, :_where_single_value_loader) do |pl|
single_value_ds.where(pl.arg)
end
loader.get(filter_expr(cond))
else
where(cond).single_value
end
end
# Run the given SQL and return an array of all rows. If a block is given,
# each row is yielded to the block after all rows are loaded. See with_sql_each.
def with_sql_all(sql, &block)
_all(block){|a| with_sql_each(sql){|r| a << r}}
end
# Execute the given SQL and return the number of rows deleted. This exists
# solely as an optimization, replacing with_sql(sql).delete. It's significantly
# faster as it does not require cloning the current dataset.
def with_sql_delete(sql)
execute_dui(sql)
end
alias with_sql_update with_sql_delete
# Run the given SQL and yield each returned row to the block.
def with_sql_each(sql)
if rp = row_proc
_with_sql_dataset.fetch_rows(sql){|r| yield rp.call(r)}
else
_with_sql_dataset.fetch_rows(sql){|r| yield r}
end
self
end
# Run the given SQL and return the first row, or nil if no rows were returned.
# See with_sql_each.
def with_sql_first(sql)
with_sql_each(sql){|r| return r}
nil
end
# Run the given SQL and return the first value in the first row, or nil if no
# rows were returned. For this to make sense, the SQL given should select
# only a single value. See with_sql_each.
def with_sql_single_value(sql)
if r = with_sql_first(sql)
r.each{|_, v| return v}
end
end
# Execute the given SQL and (on most databases) return the primary key of the
# inserted row.
def with_sql_insert(sql)
execute_insert(sql)
end
protected
# Internals of #import. If primary key values are requested, use
# separate insert commands for each row. Otherwise, call #multi_insert_sql
# and execute each statement it gives separately. A transaction is only used
# if there are multiple statements to execute.
def _import(columns, values, opts)
trans_opts = Hash[opts]
trans_opts[:server] = @opts[:server]
if opts[:return] == :primary_key
_import_transaction(values, trans_opts){values.map{|v| insert(columns, v)}}
else
stmts = multi_insert_sql(columns, values)
_import_transaction(stmts, trans_opts){stmts.each{|st| execute_dui(st)}}
end
end
# Return an array of arrays of values given by the symbols in ret_cols.
def _select_map_multiple(ret_cols)
map{|r| r.values_at(*ret_cols)}
end
# Returns an array of the first value in each row.
def _select_map_single
k = nil
map{|r| r[k||=r.keys.first]}
end
# A dataset for returning single values from the current dataset.
def single_value_ds
clone(:limit=>1).ungraphed.naked
end
private
# Internals of all and with_sql_all
def _all(block)
a = []
yield a
post_load(a)
a.each(&block) if block
a
end
# Cached placeholder literalizer for methods that return values using aggregate functions.
def _aggregate(function, arg)
if loader = cached_placeholder_literalizer(:"_#{function}_loader") do |pl|
aggregate_dataset.limit(1).select(SQL::Function.new(function, pl.arg).as(function))
end
loader.get(arg)
else
aggregate_dataset.get(SQL::Function.new(function, arg).as(function))
end
end
# Use a transaction when yielding to the block if multiple values/statements
# are provided. When only a single value or statement is provided, then yield
# without using a transaction.
def _import_transaction(values, trans_opts, &block)
if values.length > 1
@db.transaction(trans_opts, &block)
else
yield
end
end
# Internals of +select_hash+ and +select_hash_groups+
def _select_hash(meth, key_column, value_column, opts=OPTS)
select(*(key_column.is_a?(Array) ? key_column : [key_column]) + (value_column.is_a?(Array) ? value_column : [value_column])).
public_send(meth, hash_key_symbols(key_column), hash_key_symbols(value_column), opts)
end
# Internals of +select_map+ and +select_order_map+
def _select_map(column, order, &block)
ds = ungraphed.naked
columns = Array(column)
virtual_row_columns(columns, block)
select_cols = order ? columns.map{|c| c.is_a?(SQL::OrderedExpression) ? c.expression : c} : columns
ds = ds.order(*columns.map{|c| unaliased_identifier(c)}) if order
if column.is_a?(Array) || (columns.length > 1)
ds.select(*select_cols)._select_map_multiple(hash_key_symbols(select_cols))
else
ds.select(auto_alias_expression(select_cols.first))._select_map_single
end
end
# A cached dataset for a single record for this dataset.
def _single_record_ds
cached_dataset(:_single_record_ds){clone(:limit=>1)}
end
# Loader used for where_all and where_each.
def _where_loader(where_args, where_block)
cached_where_placeholder_literalizer(where_args, where_block, :_where_loader) do |pl|
where(pl.arg)
end
end
# Automatically alias the given expression if it does not have an identifiable alias.
def auto_alias_expression(v)
case v
when LiteralString, Symbol, SQL::Identifier, SQL::QualifiedIdentifier, SQL::AliasedExpression
v
else
SQL::AliasedExpression.new(v, :v)
end
end
# The default number of rows that can be inserted in a single INSERT statement via import.
# The default is for no limit.
def default_import_slice
nil
end
# Set the server to use to :default unless it is already set in the passed opts
def default_server_opts(opts)
if @db.sharded? && !opts.has_key?(:server)
opts = Hash[opts]
opts[:server] = @opts[:server] || :default
end
opts
end
# Execute the given select SQL on the database using execute. Use the
# :read_only server unless a specific server is set.
def execute(sql, opts=OPTS, &block)
db = @db
if db.sharded? && !opts.has_key?(:server)
opts = Hash[opts]
opts[:server] = @opts[:server] || (@opts[:lock] ? :default : :read_only)
opts
end
db.execute(sql, opts, &block)
end
# Execute the given SQL on the database using execute_ddl.
def execute_ddl(sql, opts=OPTS, &block)
@db.execute_ddl(sql, default_server_opts(opts), &block)
nil
end
# Execute the given SQL on the database using execute_dui.
def execute_dui(sql, opts=OPTS, &block)
@db.execute_dui(sql, default_server_opts(opts), &block)
end
# Execute the given SQL on the database using execute_insert.
def execute_insert(sql, opts=OPTS, &block)
@db.execute_insert(sql, default_server_opts(opts), &block)
end
# Return a plain symbol given a potentially qualified or aliased symbol,
# specifying the symbol that is likely to be used as the hash key
# for the column when records are returned. Return nil if no hash key
# can be determined
def _hash_key_symbol(s, recursing=false)
case s
when Symbol
_, c, a = split_symbol(s)
(a || c).to_sym
when SQL::Identifier, SQL::Wrapper
_hash_key_symbol(s.value, true)
when SQL::QualifiedIdentifier
_hash_key_symbol(s.column, true)
when SQL::AliasedExpression
_hash_key_symbol(s.alias, true)
when String
s.to_sym if recursing
end
end
# Return a plain symbol given a potentially qualified or aliased symbol,
# specifying the symbol that is likely to be used as the hash key
# for the column when records are returned. Raise Error if the hash key
# symbol cannot be returned.
def hash_key_symbol(s)
if v = _hash_key_symbol(s)
v
else
raise(Error, "#{s.inspect} is not supported, should be a Symbol, SQL::Identifier, SQL::QualifiedIdentifier, or SQL::AliasedExpression")
end
end
# If s is an array, return an array with the given hash key symbols.
# Otherwise, return a hash key symbol for the given expression
# If a hash key symbol cannot be determined, raise an error.
def hash_key_symbols(s)
s.is_a?(Array) ? s.map{|c| hash_key_symbol(c)} : hash_key_symbol(s)
end
# Returns an expression that will ignore values preceding the given row, using the
# receiver's current order. This yields the row and the array of order expressions
# to the block, which should return an array of values to use.
def ignore_values_preceding(row)
@opts[:order].map{|v| v.is_a?(SQL::OrderedExpression) ? v.expression : v}
order_exprs = @opts[:order].map do |v|
if v.is_a?(SQL::OrderedExpression)
descending = v.descending
v = v.expression
else
descending = false
end
[v, descending]
end
row_values = yield(row, order_exprs.map(&:first))
last_expr = []
cond = order_exprs.zip(row_values).map do |(v, descending), value|
expr = last_expr + [SQL::BooleanExpression.new(descending ? :< : :>, v, value)]
last_expr += [SQL::BooleanExpression.new(:'=', v, value)]
Sequel.&(*expr)
end
Sequel.|(*cond)
end
# Downcase identifiers by default when outputing them from the database.
def output_identifier(v)
v = 'untitled' if v == ''
v.to_s.downcase.to_sym
end
# This is run inside .all, after all of the records have been loaded
# via .each, but before any block passed to all is called. It is called with
# a single argument, an array of all returned records. Does nothing by
# default, added to make the model eager loading code simpler.
def post_load(all_records)
end
# Called by insert/update/delete when returning is used.
# Yields each row as a plain hash to the block if one is given, or returns
# an array of plain hashes for all rows if a block is not given
def returning_fetch_rows(sql, &block)
if block
default_server.fetch_rows(sql, &block)
nil
else
rows = []
default_server.fetch_rows(sql){|r| rows << r}
rows
end
end
# Return the unaliased part of the identifier. Handles both
# implicit aliases in symbols, as well as SQL::AliasedExpression
# objects. Other objects are returned as is.
def unaliased_identifier(c)
case c
when Symbol
table, column, aliaz = split_symbol(c)
if aliaz
table ? SQL::QualifiedIdentifier.new(table, column) : Sequel.identifier(column)
else
c
end
when SQL::AliasedExpression
c.expression
when SQL::OrderedExpression
case expr = c.expression
when Symbol, SQL::AliasedExpression
SQL::OrderedExpression.new(unaliased_identifier(expr), c.descending, :nulls=>c.nulls)
else
c
end
else
c
end
end
# Cached dataset to use for with_sql_#{all,each,first,single_value}.
# This is used so that the columns returned by the given SQL do not
# affect the receiver of the with_sql_* method.
def _with_sql_dataset
if @opts[:_with_sql_ds]
self
else
cached_dataset(:_with_sql_ds) do
clone(:_with_sql_ds=>true)
end
end
end
end
end
|