1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
Flame Graphs visualize profiled code-paths.
Website: http://www.brendangregg.com/flamegraphs.html
CPU profiling using DTrace, perf_events, SystemTap, or ktap: http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
CPU profiling using XCode Instruments: http://schani.wordpress.com/2012/11/16/flame-graphs-for-instruments/
CPU profiling using Xperf.exe: http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
Memory profiling: http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
These can be created in three steps:
1. Capture stacks
2. Fold stacks
3. flamegraph.pl
1. Capture stacks
=================
Stack samples can be captured using DTrace, perf_events or SystemTap.
Using DTrace to capture 60 seconds of kernel stacks at 997 Hertz:
# dtrace -x stackframes=100 -n 'profile-997 /arg0/ { @[stack()] = count(); } tick-60s { exit(0); }' -o out.kern_stacks
Using DTrace to capture 60 seconds of user-level stacks for PID 12345 at 97 Hertz:
# dtrace -x ustackframes=100 -n 'profile-97 /pid == 12345 && arg1/ { @[ustack()] = count(); } tick-60s { exit(0); }' -o out.user_stacks
Using DTrace to capture 60 seconds of user-level stacks, including while time is spent in the kernel, for PID 12345 at 97 Hertz:
# dtrace -x ustackframes=100 -n 'profile-97 /pid == 12345/ { @[ustack()] = count(); } tick-60s { exit(0); }' -o out.user_stacks
Switch ustack() for jstack() if the application has a ustack helper to include translated frames (eg, node.js frames; see: http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/). The rate for user-level stack collection is deliberately slower than kernel, which is especially important when using jstack() as it performs additional work to translate frames.
2. Fold stacks
==============
Use the stackcollapse programs to fold stack samples into single lines. The programs provided are:
- stackcollapse.pl: for DTrace stacks
- stackcollapse-perf.pl: for perf_events "perf script" output
- stackcollapse-stap.pl: for SystemTap stacks
- stackcollapse-instruments.pl: for XCode Instruments
Usage example:
$ ./stackcollapse.pl out.kern_stacks > out.kern_folded
The output looks like this:
unix`_sys_sysenter_post_swapgs 1401
unix`_sys_sysenter_post_swapgs;genunix`close 5
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf 85
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;c2audit`audit_closef 26
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;c2audit`audit_setf 5
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`audit_getstate 6
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`audit_unfalloc 2
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`closef 48
[...]
3. flamegraph.pl
================
Use flamegraph.pl to render a SVG.
$ ./flamegraph.pl out.kern_folded > kernel.svg
An advantage of having the folded input file (and why this is separate to flamegraph.pl) is that you can use grep for functions of interest. Eg:
$ grep cpuid out.kern_folded | ./flamegraph.pl > cpuid.svg
Provided Example
================
An example output from DTrace is included, both the captured stacks and
the resulting Flame Graph. You can generate it yourself using:
$ ./stackcollapse.pl example-stacks.txt | ./flamegraph.pl > example.svg
This was from a particular performance investigation: the Flame Graph
identified that CPU time was spent in the lofs module, and quantified
that time.
Options
=======
See the USAGE message (--help) for options:
USAGE: ./flamegraph.pl [options] infile > outfile.svg
--titletext # change title text
--width # width of image (default 1200)
--height # height of each frame (default 16)
--minwidth # omit smaller functions (default 0.1 pixels)
--fonttype # font type (default "Verdana")
--fontsize # font size (default 12)
--countname # count type label (default "samples")
--nametype # name type label (default "Function:")
--colors # "hot", "mem", "io" palette (default "hot")
--hash # colors are keyed by function name hash
--cp # use consistent palette (palette.map)
eg,
./flamegraph.pl --titletext="Flame Graph: malloc()" trace.txt > graph.svg
As suggested in the example, flame graphs can process traces of any event,
such as malloc()s, provided stack traces are gathered.
Consistent Palette
==================
If you use the --cp option, it will use the $colors selection and randomly
generate the palette like normal. Any future flamegraphs created using the --cp
option will use the same palette map. Any new symbols from future flamegraphs
will have their colors randomly generated using the $colors selection.
If you don't like the palette, just delete the palette.map file.
This allows your to change your colorscheme between flamegraphs to make the
differences REALLY stand out.
Example:
Say we have 2 captures, one with a problem, and one when it was working
(whatever "it" is):
cat working.folded | ./flamegraph.pl --cp > working.svg
# this generates a palette.map, as per the normal random generated look.
cat broken.folded | ./flamegraph.pl --cp --colors mem > broken.svg
# this svg will use the same palette.map for the same events, but a very
# different colorscheme for any new events.
Take a look at the demo directory for an example:
palette-example-working.svg
palette-example-broken.svg
|